
Multilanguage Frameworks
➢ Ideal Multilanguage Application
➢ JVM Multilanguage Environment

○ JVM Languages
○ Managed Languages
○ C-World

➢ GraalVM
➢ Plurality World

○ Where it is already useful
○ Intrinsic limitations
○ External complications

➢ Future of programming

Julius Hrivnac (ĲClab Orsay)New Ways
New Pǿsibilities

1

do something

script Ideal Multilanguage Appllication

read

DB

manage

show storeprocess

Use the best tools and languages for eacǇ tasǌ.
Transparent interfaces (nǐ stuȓ).

Datƾ sharing (nǐ prȂies).
It works ! - We are (almǿt) there ! 2

What is
the general multilanguage technology status

?

3

JVM Languages

➢ Groovy (Apache): very high level scripting
language, used in Graph DB

➢ Scala (Apache): functional language, used in
Spark

➢ Kotlin (Google): for Android
➢ Clojure: Lisp-like
➢ BeanShell: interpreted/scripted Java

➢ Languages completely interoperable with Java (loaded into the same runtime or
compiled into standard class-files)

➢ Fully inter-operable
➢ We can freely mix code from all those languages (even via inheritance)
➢ Can be used in a scripting interpreted way or compiled
➢ Successful new features from those languages are being incorporated in Java

itself (e.g. functional syntax from Scala)
#!/usr/bin/env groovy
// converting SQL into XML with Groovy
// either run as a shell script or compiled
// —---
sql = Sql.newInstance("jdbc:mysql://localhost/Tuples",
 "org.gjt.mm.mysql.Driver")
xml = new MarkupBuilder(new File("Tuples.xml"))
xml.tagSet() {
 sql.eachRow("select * from tuple where run > 2") {
 row -> xml.tag(Run:row.run, Event:row.event)
 }
 }

4

Managed Languages

➢ Languages from different origin, made interoperable by re-implementation (or via
specific bridges)

○ Go, Haskel, JavaScript, Lisp, OCaml, Pascal, PHP, Python, R, Rexx, Ruby, Scheme, Smalltalk,
Tcl,...

➢ More than 100 languages available in some way

5

C-World
➢ Direct compilation to native code

○ Sometimes by pre-compiling to C
➢ Lack of high level management (reflection, introspection)

○ Often implemented on top with in-house solutions
■ Which generates incompatibilities

➢ Often considered as faster and smaller
○ But even when it’s true, there is a cost

■ Lack of functionality
■ Non-reproducibility
■ Non-portability
■ Very complex implementation of higher-level concepts

➢ Can be only connected via direct JNI or JNA
○ As they are running in an unmanaged environment

➢ Co-existence between managed JVM languages and low-level C-languages is difficult,
proprietary or too primitive

○ No generic approach (so far)

6

Revolution ?
(Holy Grail ?)

7

GraalVM

➢ Universal VM
○ Non-JVM languages are at the same level as JVM languages (=> full interoperability)
○ All languages running in the same VM (traditional multi-language environment runs multiple languages

side-by-side with frequent conversions of data)
○ GraalVM is faster and smaller than OpenJVM (GraalVM is written in Java, OpenJVM is written in C++)
○ Full interoperability between OpenJVM and GraalVM (program compiled for one can be run in another)
○ Can be embedded in external applications (Oracle, Apache, MySQL,...)

➢ Can build native executables and libraries (using AOT (Ahead Of Time) compiler instead of JIT)
○ Fully interoperable with native applications
○ Smaller footprint, faster startup, sometimes faster execution
○ Losing some dynamical features

New Managed Environment
Supporting botǇ JVM and C-based languages

Tǐ run in VM or natively

8

GraalVM

➢ Polyglot (J)DK & (J)VM
➢ By Oracle

○ Big effort
○ Also included in OracleDB
○ Already used in industry (Twitter,...)

➢ CE (Community Edition): GPL licence (or less) - as Java
○ Components have the same licences as the original implementations (eg. Python as Python)

➢ EE (Enterprise Edition): better performance, security, support,...
➢ GraalVM JIT is included in OpenJDK (project Galahad):

java -XX:+UnlockExperimentalVMOptions -XX:+UseJVMCICompiler
○ So trivial to try
○ Native Image compiler will follow

➢ New release every 3 months
○ rel22 supporting JDK 11,17
○ rel23-dev supporting JDK 17,20

➢ Linux, MS, MacOSX
➢ Uses new Java modularity features (since Java 9)

○ As the pluggable JIT compiler
➢ Similar project in the past: NestedVM - failed in 2009 9

http://nestedvm.ibex.org/

Supported Languages

exe, so

class, jar

Multiple languages are running in the
same space/environment.

X
Traditional multǈ-language pgms run multiple

languages side-by-side.

➢ Growing number of supported languages (CUDA,
WebAssembly,...)

➢ New Tools (debuggers, profilers, monitors,...)
➢ Integration in other applications and toolkits

10

Tools
➢ Growing number of supported languages (CUDA,

WebAssembly,...)
➢ New Tools (debuggers, profilers, monitors,...)
➢ Integration in other applications and toolkits

Tools understand your language.

Unlike tools for pre-compiled languages.

11

Integration
➢ Growing number of supported languages (CUDA,

WebAssembly,...)
➢ New Tools (debuggers, profilers, monitors,...)
➢ Integration in other applications and toolkits

Allows, for ǣample,
using MySQL witǇ Python instead of SQL.

12

$ javac Hello.java
$ time java Hello
Hello !
0,10s user 0,03s system 131% cpu 0,097 total
$ native-image Hello
==
GraalVM Native Image: Generating 'hello'...
==
[1/7] Initializing... (4.1s @ 0.21GB)
 Version info: 'GraalVM 22.0.0.2 Java 11 CE'
[2/7] Performing analysis... [*******] (12.7s @ 0.47GB)
 2,563 (82.60%) of 3,103 classes reachable
 3,211 (60.36%) of 5,320 fields reachable
 11,648 (72.43%) of 16,082 methods reachable
 27 classes, 0 fields, and 135 methods registered for reflection
 57 classes, 58 fields, and 51 methods registered for JNI access
[3/7] Building universe... (0.8s @ 0.62GB)
[4/7] Parsing methods... [*] (0.8s @ 0.84GB)
[5/7] Inlining methods... [****] (1.2s @ 0.75GB)
[6/7] Compiling methods... [***] (9.3s @ 1.19GB)
[7/7] Creating image... (1.1s @ 1.45GB)
 3.69MB (35.06%) for code area: 6,949 compilation units
 5.86MB (55.66%) for image heap: 1,543 classes and 80,509 objects
 999.26KB (9.28%) for other data
 10.52MB in total
--
Top 10 packages in code area: Top 10 object types in image heap:
 606.25KB java.util 1.64MB byte[] for general heap data
 282.31KB java.lang 715.44KB java.lang.String
 222.52KB java.util.regex 548.99KB java.lang.Class
 219.55KB java.text 451.55KB byte[] for java.lang.String
 193.17KB com.oracle.svm.jni 363.75KB java.util.HashMap$Node
 149.73KB java.util.concurrent 192.00KB java.util.HashMap$Node[]
 117.92KB java.math 139.81KB java.lang.String[]
 103.60KB com.oracle.svm.core.reflect 139.04KB char[]
 97.83KB sun.text.normalizer 130.59KB java.util.concurrent.ConcurrentHashMap$Node
 88.78KB com.oracle.svm.core.genscavenge 103.92KB sun.util.locale.LocaleObjectCache$CacheEntry
 ... 111 additional packages ... 723 additional object types
 (use GraalVM Dashboard to see all)
--
 1.6s (5.1% of total time) in 17 GCs | Peak RSS: 2.54GB | CPU load: 3.33
--

Produced artifacts:
 hello (executable)
 hello.build_artifacts.txt
==
Finished generating 'hello' in 31.1s.
$ time hello
Hello !
0,00s user 0,00s system 89% cpu 0,002 total

Native Image Example
${graalvm_dir}/bin/native-image \
--delay-class-initialization-to-runtime=\
io.grpc.netty.shaded.io.netty.handler.ssl.OpenSsl \
--initialize-at-build-time=\
org.apache.log4j.Level,\
org.apache.log4j.Layout,\
org.apache.log4j.PatternLayout,\
org.apache.log4j.Logger,\
org.apache.log4j.helpers.LogLoorg.apache.log4j.Level,\
org.apache.log4j.Priority,\
org.apache.log4j.LogManager,\
org.apache.log4j.helpers.Loader,\
org.apache.log4j.helpers.LogLog,\
org.apache.log4j.Category,\
org.apache.log4j.spi.RootLogger,\
org.apache.log4j.spi.LoggingEvent,\
org.slf4j.LoggerFactory,\
org.slf4j.impl.Log4jLoggerAdapter,\
org.slf4j.impl.StaticLoggerBinder,\
java.beans.Introspector,\
com.sun.beans.Introspector,\
com.sun.beans.introspect.ClassInfo \
--report-unsupported-elements-at-runtime \
-H:Name=GroovyEL.exe \
-H:Path=../bin \
-jar ../lib/GroovyEL.exe.jar

Basic Ex
ample

Real-life
 Example

13

Polyglot Examples (1)
➢ Objects are never copied
➢ Conversion (into client physical format) at the latest possible time
➢ All tools are available for all languages
➢ Several ways of calling foreign language:

○ Load as a script and execute
○ Compile as a class and use
○ Generate Native Image and call

// C calling JS
poly_create_context(thd, &ctx);
poly_context_eval(thd, ctx, “js”, “foo”, “function() {return 42;}”, &func);
poly_value_execute(thd, func, NULL, 0, &answer);
poly_value_fits_in_int32(thd, answer, &fits);
poly_value_as_int32(thd, answer, &result);
return result;

// Java calling Python
Value clazz = context.eval(Source.newBuilder("python", new File("mycode.py")).build());
Value instance = clazz.newInstance(1234);
System.out.println(instance.invokeMember("pyMethod", new int[]{1, 2, 3}));

// Java calling JS
Context context = Context.create();
Value v = context.eval(“js”, “function() {return 42;}”);
Value answer = v.execute();
return answer.asInt();

// Java calling C
Context context = Context.create();
File file = new File(“polyglot”); // c-pgm compiled with GraalVM
Source source = Source.newBuilder(“llvm”, file).build();
Value cpart = polyglot.eval(source);
cpart.execute();

14

Polyglot Examples (2)

// C++ calls Java

// C++
int main() {
 graal_isolate_t *isolate = NULL;
 graal_isolatethread_t *thread = NULL;
 graal_create_isolate(NULL, &isolate, &thread);
 printf("Result> %d\n",ceilingPowerOfTwo(thread, 14));
 }

// Java
public class MyMath {
 @CEntryPoint (name = "ceilingPowerOfTwo")
 public static int ceilingPowerOfTwo(IsolateThread thread, int x) {
 return IntMath.ceilingPowerOfTwo(x);
 }
 }

// JS calls CUDA
const DeviceArray = Polyglot.eval('grcuda', string='DeviceArray')
const in_arr = DeviceArray('float', 1000)
const out_arr = DeviceArray('float', 1000)
// set arrays ...
const code = '__global__ void inc_kernel(...) ...'
const buildkernel = Polyglot.eval('grcuda', string='buildkernel')
const incKernel = buildkernel(code, 'inc_kernel', 'pointer, pointer, uint64')
incKernel(160, 256)(out_arr, in_arr, N)

➢ Interaction with LLVM languages requires
more boiler-plate code

➢ It’s simpler to compile JVM code into Native
Image than to interface JVM with LLVM

➢ C++ calling Java is simpler than Java
calling C++

// JS calls C++

// JS
loadSource(“llvm”, “cpppart”);
Value getSumOfArrayFn = polyglotCtx.getBindings(“llvm”).getMember(“getSumOfArray”);
int sum = getSumOfArrayFn.execute(sqrNumbers, sqrNumbers.length).asInt();

// C++
extern “C” getSumOfArray(int array[], int size) {
 int i, sum = 0;
 for (i = 0; i < size; i++) {
 sum += array[i];
 }
 return sum;
 }

15

Where it is already useful Now
➢ Good news: It really works and it works well
➢ For JVM languages:

○ Just using GraalVM JIT (included in OpenJVM) makes it faster (better optimisation)
○ Compiling with GraalVM compiler make better bytecode
○ Creating Native Image may improve performance
○ Allows better integration with other languages
○ For Scala:

■ GraalVM JIT is able to optimize Scala much more than OpenJVM JIT (factor > 2)
➢ For Python:

○ Full interoperability with JVM languages
○ Speed, especially when compiled to Native Image
○ Better interoperability with C/C++ when compiled to Native Image

➢ For C/C++:
○ Can replace C/C++ code with code in better languages or integrate existing components written in better

languages
■ By compiling them into Native Image or connecting with Truffle multi-language environment

○ Integration in frameworks written in other languages
○ Possibility to run in Managed Environment (so easy debugging)
○ Sometimes performance gain just by re-building using GraalVM (without modification)

Can rewrite just one part of the systeǎ in another (more suitable) language,
And compile intǐ native ǣecutable.

16

Intrinsic Limitations
➢ It may be complicated to configure

○ It many cases, native image generation should be configured/tuned
○ One can/should configure/tune for performance

➢ Some (Java) applications may need JVM even when compiled into native executable
○ When they (mis)use reflection and construct classes at run-time

■ For example log4J
○ But after all, we may consider JVM just as another native library (which it is)

➢ We may gain speed for small applications, not so often for large complex ones
○ Not surprising, Java is often fast for real-life applications

➢ By compiling into native executable, we lose flexibility and portability
➢ Truffle languages (Python, Ruby, JS,...) are not at the same level of inter-operability as direct JVM

languages
➢ Co-existence of LLVM languages (C, C++, Rust) with JVM languages is not as straightforward as

between two JVM languages
○ Different memory & object models
○ Values, objects, names should be converted
○ Heavy communication across LLVM-JVM border may slow down execution
○ In that case, it may be more useful to compile JVM languages into native image
○ But it’s probably as far as one can go in integrating JVM & C languages

17

External Complications
➢ Language specific build systems

○ Very elaborated make files
➢ Language specific deployment systems

○ Silently installing dependencies
■ Pip, conda, node, …

➢ Specific bridges between languages
○ Often, internal implementation uses other languages

■ Python packages often contains C code, …
➢ Language versions

○ It’s impossible to support all language versions and dialects
■ Python 2 vs 3, …

➢ Complex project specific environments

Long list of projects whicǇ have already been ported/migrated/interfaced.
ǚe mǿt popular & least proprietary ones.

18

Future of Programming
➢ The Frameworks will consist of various components …

○ Third-party black-boxes
○ Written by AI
○ Legacy boxes

➢ Sometimes, we may not even know (or care) what is the
implementation language

○ This already works in the classical JVM
➢ Languages will be used for their strong points (Scala for parallelism,

JavaScript for Graphics,...)
➢ Seamless (plug-in) …
➢ It’s important to really separate data from algorithms and logic (finally)

Can rewrite just one part of the systeǎ in another (more suitable) language,
And compile intǐ native ǣecutable.

ChatGPT-generated

prograǎ using Javƾ &

C++ connected by

GraalVM

19

Successfully Tested on:
➢ http://hrivnac.web.cern.ch/hrivnac/Activities/Packages/FinkBrowser

○ https://github.com/hrivnac/FinkBrowser
➢ https://hrivnac.web.cern.ch/hrivnac/Activities/Packages/Lomikel

○ https://github.com/hrivnac/Lomikel
➢ http://hrivnac.web.cern.ch/hrivnac/Activities/Packages/Atlascope

○ https://gitlab.cern.ch/atlas-event-index/GraphDB

Nǣt step: Try on ƾ real-life big project.

20

http://hrivnac.web.cern.ch/hrivnac/Activities/Packages/FinkBrowser/
https://github.com/hrivnac/FinkBrowser
https://hrivnac.web.cern.ch/hrivnac/Activities/Packages/Lomikel
https://github.com/hrivnac/Lomikel
http://hrivnac.web.cern.ch/hrivnac/Activities/Packages/Atlascope
https://gitlab.cern.ch/atlas-event-index/GraphDB

Backup Slides

21

Javƾ
➢ High-level programming environment

○ Java Language (and compiler) + Java Virtual Machine (runtime) + standard libraries
➢ Created 1995 by James Gosling for Sun
➢ Major implementations:

○ Oracle
○ OpenJVM (GPL) - the reference

➢ Evolves following formal Java Community Process via Java Enhancement Proposal (JEP) and Java
Specification Requests (JSR)

○ All standard features should have the reference implementation and the conformity test suit
➢ Two release per year (March, September)

○ Current release: 17 (18 should be released today)
○ We are mostly using: 8, sometimes 11
○ Early access already for: 19

➢ Yearly Java One Conference @ San Francisco
➢ Almost completely backward compatible (i.e. one can compile/run old programs in new Java), except for

some newly introduced keywords (like assert)
➢ Very dynamic and flexible environment

○ Introspection, Memory Management, …
➢ Many monitoring and profiling tools (thanks to introspection) 22

Javƾ Performance

➢ Performance:
○ As other languages: math, graphics,... (as they are all calling the same implementation behind)
○ Faster than other languages: OO features, memory management, parallelism, dynamic optimisation
○ Slower than other languages: matrix manipulations (as no native matrices), some numerical operations (a cost for

exact reproducibility), startup (as should load VM and perform initial optimisation)
○ Needs more memory (to enable reflection, memory management and allow dynamical features and runtime

optimisation)
➢ Comparing performance is very difficult

○ Startup vs warmup vs peak
○ Throughput vs latency vs memory
○ Min vs max vs mean
○ Environment may be tuned for a specific performance requirements
○ Should compare on real applications, but then comparing not only language

■ Should include aux functionality (memory management, at least some reflection, often parallelism,...)

23

Javƾ Object Model
➢ Very sophisticated mechanism for creating Objects from different sources via hierarchy

of ClassLoaders (what ‘new’ does)
➢ Allows constructing Objects like Lego

○ System classes
○ From JAR files
○ From Network
○ As Java Beans (Web Service)
○ Via Serialisation, object databases (e.g. reading of Root files)
○ Using Aspects (= enhancing objects at runtime)

➢ Full class name includes classloader namespace + class name
○ So we can have different classes with the same name in one program

■ Allows for object migration (= one object changes its class)
■ Allows for dynamic re-loading of classes

➢ Base for reflection, memory management,...
➢ May be tricky and non-intuitive to use (e.g. anti-inheritance pattern)

○ Sometimes misused (log4j ?)
○ Application developer rarely needs it

➢ Since Java 9 extended to Java Modules (which can explicitly import/export/hide
components)

➢ Foundation for multi-language environment
○ Classloaders loading from different languages into the same runtime

ClassLoader loader = new MyClassLoader(...);
Object o = loader.loadClass(“MyNamespace.MyClass”).newInstance();

24

JIT vs AOT
➢ JIT = Just In Time Compiler: compiling into bytecode (jar), dynamically re-compiling at runtime by JVM

(HotSpot)
➢ AOT = Ahead Of Time Compiler: compiling into native binary (exe, so)

○ Very complex due to extremely dynamic nature of Java - tries to guess what is going on during runtime
○ Runs initialisation and creates initial heap during compilation
○ Close World Assumption: All dependencies should be available at compile time (not true for JIT), no dynamic loading
○ May have to provide hints about dynamic usage (reflection operations, class initialisation, lambdas, annotations, service

loaders,...)
■ Can use Tracing Agent for that
■ Can put this configuration in jar META-IN/native-image

○ Can configure to tune the image (memory vs speed,...)
○ May need JVM at runtime (fallback image) to handle some dynamical operations

➢ Can compile jar into exe, so

Generating GraalVM native image
is better than re-writing

Javƾ/Python/… in C/C++/Gǐ,..

25

Javƾ calling C

Traditional JNI
slow, complȔ

Traditional JNA
faster, complȔ

JNI viƾ Native Image
fast, simpler

Native Image
fast, simple 26

