Multilanguage frameworks

Weu] (Waya Julius Hrivnac (ycab Orsay)
New Poaaibilities > Ideal Multilanguage Applicati
> JVYM Multilanguage Environment
o JVM languages

o Managed languages
o C-World

GraalVM
Plurality World

o ‘Where il is already useful
o Inirinsic limitalions

o &dernal complicalions
Future of pregramming

do something

Use the best tools and languages for each task.
Transparent interfaces (no siubs).
Data sharing (no proxies).

It works ! - We are (almost) there !

What is
theqelwralnudlilanqt?laqeteduwloqyatauw

VVY

JVM languages

Languages completely interoperable with Java (loaded into the same runtime or

>
compiled into standard class-files)
> Fully inter-operable
> We can freely mix code from all those languages (even via inheritance)
> Can be used in a scripting interpreted way or compiled
>

itself (e.g. functional syntax from Scala)

Groovy (Apache): very high level scripting
language, used in Graph DB

Scala (Apache): functional language, used in
Spark

Kotlin (Google): for Android

Clojure: Lisp-like

BeanShell: interpreted/scripted Java

Successful new features from those languages are being incorporated in Java

#!/usr/bin/env groovy %

// converting SQL into XML with Groovy
// either run as a shell script or compiled
A G DL L L L L L LU LEL L
sql = Sql.newInstance("jdbc:mysql://localhost/Tuples”,
"org.gjt.mm.mysql.Driver")
xml = new MarkupBuilder(new File("Tuples.xml"))
xml.tagSet() {
sql.eachRow("select * from tuple where run > 2") {
row -> xml.tag(Run:row.run, Event:row.event)

}
}

Managed languages

> Languages from different origin, made interoperable by re-implementation (or via

specific bridges)
o Go, Haskel, JavaScript, Lisp, OCaml, Pascal, PHP, Python, R, Rexx, Ruby, Scheme, Smalltalk,
Tel,...

> More than 100 languages available in some way

C-World

Direct compilation to native code
o Sometimes by pre-compiling to C
Lack of high level management (reflection, introspection)
o Often implemented on top with in-house solutions
[Which generates incompatibilities
Often considered as faster and smaller

o But even when it’s true, there is a cost
[Lack of functionality
= Non-reproducibility
= Non-portability
[Very complex implementation of higher-level concepts

Can be only connected via direct JNI or JNA

o As they are running in an unmanaged environment
Co-existence between managed JVM languages and low-level C-languages is difficult,
proprietary or too primitive

o No generic approach (so far)

TRevolution ?
(Holy Grail ?)

graal‘l/m Graal

New Managed Environment

Supporting both JVM and C-based languages
To run in VM or nalively

> Universal VM
o Non-JVM languages are at the same level as JVM languages (=> full interoperability)
o All languages running in the same VM (traditional multi-language environment runs multiple languages

side-by-side with frequent conversions of data)

o GraalVM is faster and smaller than OpenJVM (GraalVM is written in Java, OpenJVM is written in C++)
o Full interoperability between OpenJVM and GraalVM (program compiled for one can be run in another)
o Can be embedded in external applications (Oracle, Apache, MySQL,...)

> Can build native executables and libraries (using AOT (Ahead Of Time) compiler instead of JIT)
o Fully interoperable with native applications
o Smaller footprint, faster startup, sometimes faster execution
o Losing some dynamical features

Yy

vy

Vv

GraalVM Graal

Polyglot (J)DK & (J)VM
By Oracle
o Big effort
o Also included in OracleDB
o Already used in industry (Twitter,...)
CE (Community Edition): GPL licence (or less) - as Java
o Components have the same licences as the original implementations (eg. Python as Python)
EE (Enterprise Edition): better performance, security, support,...
GraalVM JIT is included in OpenJDK (project Galahad):
java -XX:+UnlockExperimentalVMOptions -XX:+UseJVMCICompiler
o So trivial to try
o Native Image compiler will follow
New release every 3 months
o rel22 supporting JDK 11,17
o rel23-dev supporting JDK 17,20
Linux, MS, MacOSX

Uses new Java modularity features (since Java 9)
o As the pluggable JIT compiler
Similar project in the past: NestedVVM - failed in 2009

http://nestedvm.ibex.org/

Supported ‘Lanquaqea GraalVM.

> Growing number of supported languages (CUDA, mwmmm

{YobASgemb ... same spaceenvironment.
> New Tools (debuggers, profilers, monitors,...) X« :
> Integration in other applications and toolkits

I

e

Traditional mulli-language pgms run multiple
languages side-by-side.

Java HotSpot VM 10

aRuby @ python’ ®©®m
nede ¢

Truffle Language Implementation Framework

GraalVM Compiler

>
>

0:After Partial Evaluation

Tools

Growing number of supported languages (CUDA,
WebAssembly,...)

New Tools (debuggers. profilers, monitors....)

Integration in other applications and toolkits

LD Fiters [Bytecode | ControlFlow |
25 +2¢ aQ goallBly we @ B @ [Q- Search in Nodes © | --custom-- B e 3
& coloring
lote-e

[chrome-devtools:
< C | ® chrome

Sources.

Console

Memory

Sources | Content scripts »
> (no domain)
|y fitesy
¥ B tmp/node
Helloworldjs

——
450 Deopt TransierToiterpreer | [462 VinualFramecet | [=S85

474 InstanceOl

Console What's New

© | ©MainCorv | Filter

[Remove state
[Probability Coloring
(& Reduce Edges

& Call Graph Coloring
& Stamp Coloring

chrome-devtools://devtools/bundled/inspector.htmizexperiments=true&v8only=true&ws=127.0.1.

X

C localhost:8000 X

evtools://devtools, e e tmi

Profiler NetBeans

@ | Helloworldjs x
(function (exports,

require, module,

car nca Halln Wacldiiamis
[object Object]
chunkedEncoding: false
¥ connection: [object Object]
allowHalfOpen: true
connecting: false
destroyed: false
domain: null

»>on: function () { [native code] }

> parser: [object HTTPParser]

» read: function () { [native code] }

readable: true

b server: [object Object]
writable: true
bytesDispatched: 0

Tools understand your language.

GraalVM.

Unlike tools for pre-compiled languages.

:9229/76fcb6dd-2b29a2edd

n,Aa ot
filenane, _dirname) { ~|v Call Stack
» server
all
emitTwo
emit
parserOnincoming
parserOnHeadersCom
program$0
¥ Scope

t:8000/") ;

¥ Local
» request: [object
» response: [object
~| ¥ Breakpoints
- 9 Helloworldjs:4
response .writeHead (2

Verbose ¥

Applications x El
v HLocal
¥ VisualyM
v ¥ Ruby (pid 1651)
@ [heapdump] 1:05:21 PM
& Remote
B VM Coredumps.
@ Snapshots

Start Page *|¥ Ruby (pid 1651) X

Graal VisualVM visualvm-truffle-heapwalker-454-on-20180115

<> (vo
Overview [| Monitor Bl| Threads B/ Sampler &/ Profiler ©| & [heapdump] 1:05:21 PM x
C Ruby (pid 1651)
Heap Dump
B Objects~ Presets: AllObjects v ails: [ElPreview W Variables R References & JavaObject o
Name Count Size ~ |[Retained ot toget) -
> B string 4635 (0.3%) 4449608 (0.5% n/als
> [symbol 1,846 (0.1%) 17,2168 n/al’]
» B class 1,355 (0.1%) 130,080 B n/a
» B Array 686 (0%) 65,8568 n/a
» B Regexp 437 41,9528 nfa
v B proc 379 36,3848 nfa
» ® proc#1695: lambda 968 3 n/a
> ® proc#1965: lambda 968 %) n/a
|~ " proce196s i blockindefine hookedvarisble | | e 0l /3
v <variables>
> % self (hidden) =® Module#365: Ti KernelOperations 968 nfa
% block (hidden) = © null E z
» <references>
» B proc#1967: lambda 968 n/a
» ® proc#2000: lambda 968 n/a
> % proc#2001: block in define_hooked_variable 968 n/a
> ® Proc#2002: lambda 968

Al Objects B Proc # »>® Proc#1966 #

Vv

TIntegration Graal

Growing number of supported languages (CUDA,
WebAssembly,...)

New Tools (debuggers, profilers, monitors,...)
Integration in other applications and toolkits

fllows, for example,
wsing MySQ{ with Python instead of SQT,

GraalVM.
;‘%lava" JRuby @ python C

’Scala ‘W’ JS @
Openﬂr‘pw-\‘f f\@dc OR/—\CLG R Standalone

@® DATABASE ySaL

12

Native Tmage Example e

$ javac Hello.java

$ time java Hello

Hello !

0,10s user 0,03s system 131% cpu 0,097 total
$ native-image Hello

GraalVM Native Image: Generating 'hello'...

[1/7] Initializing... (4.1s @ 0.21GB)
Version info: 'GraalVM 22.0.0.2 Java 11 CE'
[2/7] Performing analysis... [****++] (12.7s @ 0.476G8B)

2,563 (82.60%) of 3,103 classes reachable
3,211 (60.36%) of 5,320 fields reachable
11,648 (72.43%) of 16,082 methods reachable
27 classes, © fields, and 135 methods registered for reflection

57 classes, 58 fields, and 51 methods registered for INI access

[3/7] Building universe... (.85 @ 0.62GB)

[4/7] Parsing methods. .. *] (.85 @ 0.84GB)

[5/7] Inlining methods. .. [*+*] (1.2s @ 0.756B)

[6/7] Compiling methods... — [***] (9.3s @ 1.1968)

[7/7] Creating image... (1.1s @ 1.45GB)
3.69MB (35.06%) for code area: 6,949 compilation units

5.86MB (55.66%) for image heap: 1,543 classes and 80,509 objects
999.26KB (9.28%) for other data
10.52MB in total

Top 16 packages in code area: Top 16 object types in image heap:

606.25KB java.util 1.64MB byte[] for general heap data

282.31KB java.lang 715.44KB java.lang.String

222.52KB java.util.regex 548.99KB java.lang.Class

219.55KB java.text 451.55KB byte[] for java.lang.String

193.17KB com.oracle.svm.jni 363.75KB java.util.HashMap$Node

149.73KB java.util.concurrent 192.00KB java.util.HashMap$Node[]

117.92KB java.math 139.81KB java.lang.String[]

103.60KB com.oracle.svm.core.reflect 139.04KB char[]
97.83KB sun.text.normalizer 130.59KB java.util.concurrent.ConcurrentHashMap$Node
88.78KB com.oracle. svm.core.genscavenge 103.92KB sun.util.locale.LocaleObjectCache$CacheEntry

. 111 additional packages ... 723 additional object types

(use GraalM Dashboard to see all)

Produced artifacts:
hello (executable)
hello.build_artifacts.txt

Finished generating 'hello' in 31.1s.

$ time hello

Hello !

0,00s user 0,00s system 89% cpu 0,002 total

${graalvm_dir}/bin/native-image \
--delay-class-initialization-to-runtime=\
io.grpc.netty.shaded.io.netty.handler.ssl.0OpenSsl \
--initialize-at-build-time=\ \L
org.apache.log4j.Level,\ W
org.apache.log4j.Layout,\ \-‘SQ
org.apache.log4j.PatternLayout,\ cg&:
org.apache.log4j.Logger,\ Qk
org.apache.log4j.helpers.LoglLoorg.apache.log4j.Level,\
org.apache.logdj.Priority,\
org.apache.log4j.LogManager,\
org.apache.log4j.helpers.Loader,\
org.apache.log4j.helpers.Loglog,\
org.apache.log4j.Category,\
org.apache.log4j.spi.RootLogger,\
org.apache.log4j.spi.LoggingEvent,\
org.slf4j.LoggerFactory,\
org.slf4j.impl.LogdjLoggerAdapter,\
org.slf4j.impl.StaticLoggerBinder,\
java.beans.Introspector,\

com.sun.beans.Introspector,\
com.sun.beans.introspect.ClassInfo \
--report-unsupported-elements-at-runtime \
-H:Name=GroovyEL.exe \

-H:Path=../bin \

-jar ../lib/GroovyEL.exe.jar

Polyglot &xamples (1)

Conversion (into client physical format) at the latest possible time

Objects are never copied

All tools are available for all languages
Several ways of calling foreign language:
o Load as a script and execute
o Compile as a class and use
o Generate Native Image and call

YVYVY

// 3Java calling Python

Graal

// Java calling C

Context context = Context.create();

File file = new File(“polyglot”); // c-pgm compiled with GraalVM
Source source = Source.newBuilder(“llvm”, file).build();

Value cpart = polyglot.eval(source);

cpart.execute();

Value clazz = context.eval(Source.newBuilder("python", new File("mycode.py")).build());
Value instance = clazz.newInstance(1234);

// C calling 3S
poly create_context(thd, &ctx);

System.out.println(instance.invokeMember("pyMethod", new int[]{1, 2, 3}));

poly context eval(thd, ctx, “js”, “foo”, “function() {return 42;}”, &func);

poly value_execute(thd, func, NULL, O, &answer);
poly value fits_in_int32(thd, answer, &fits);
poly value_as_int32(thd, answer, &result);
return result;

// Java calling 3JS

Context context = Context.create();

Value v = context.eval(“js”, “function() {return 42;}”);
. Value answer = v.execute();

return answer.asInt(); 14

Polyglot Examples (2) Graal

> Interaction with LLVM languages requires
more boiler-plate code

> |t's simpler to compile JVM code into Native
Image than to interface JVM with LLVM

> C++ calling Java is simpler than Java
calling C++

// C++ calls Java

// C++

int main() {
graal_isolate_t *isolate = NULL;
graal_isolatethread_t *thread = NULL;
graal_create_isolate(NULL, &isolate, &thread);
printf("Result> %d\n",ceilingPowerOfTwo(thread, 14));

}

// Java
public class MyMath {
@CEntryPoint (name = "ceilingPowerOfTwo")
public static int ceilingPowerOfTwo(IsolateThread thread, int x) {
return IntMath.ceilingPowerOfTwo(X);
)
}

// 3S calls CUDA

const DeviceArray = Polyglot.eval('grcuda', string='DeviceArray')
const in_arr = DeviceArray('float', 1000)

const out_arr = DeviceArray('float', 1000)

// set arrays ...

const code = '__global _ void inc_kernel(...) ...
const buildkernel = Polyglot.eval('grcuda', string='buildkernel')

const incKernel = buildkernel(code, 'inc_kernel', 'pointer, pointer, uinté64')
incKernel(160, 256)(out_arr, in_arr, N)

// JS calls C++

// 3s

loadSource(“llvm”, “cpppart”);

Value getSumOfArrayFn = polyglotCtx.getBindings(“llvm”).getMember(“getSumOfArray”);
int sum = getSumOfArrayFn.execute(sqrNumbers, sqrNumbers.length).asInt();

// C++
extern “C” getSumOfArray(int array[], int size) {
int i, sum = 9;
for (i =0; i < size; i++) {
sum += array[i];
}
return sum;
}
15

A\

Where it is already useful Now

Good news: It really works and it works well

For JVM languages:

o Just using GraalVM JIT (included in OpenJVM) makes it faster (better optimisation)
Compiling with GraalVM compiler make better bytecode
Creating Native Image may improve performance
Allows better integration with other languages
For Scala:

[GraalVM JIT is able to optimize Scala much more than OpenJVM JIT (factor > 2)
For Python:

o Full interoperability with JVM languages

o Speed, especially when compiled to Native Image

o Better interoperability with C/C++ when compiled to Native Image

O O O O

For C/C++:
o Can replace C/C++ code with code in better languages or integrate existing components written in better
languages

[] By compiling them into Native Image or connecting with Truffle multi-language environment
o Integration in frameworks written in other languages
o Possibility to run in Managed Environment (so easy debugging)
o Sometimes performance gain just by re-building using GraalVM (without modification)

Can rewrite just one part of the aystem in another (more suitable) language,

7ind compile into native execulable. 1

Vv

It may be complicated to configure
o It many cases, native image generation should be configured/tuned
o One can/should configure/tune for performance
Some (Java) applications may need JVM even when compiled into native executable

o When they (mis)use reflection and construct classes at run-time
] For example log4J

o But after all, we may consider JVM just as another native library (which it is)
We may gain speed for small applications, not so often for large complex ones

o Not surprising, Java is often fast for real-life applications
By compiling into native executable, we lose flexibility and portability
Truffle languages (Python, Ruby, JS,...) are not at the same level of inter-operability as direct JVM
languages
Co-existence of LLVM languages (C, C++, Rust) with JVM languages is not as straightforward as
between two JVM languages

o Different memory & object models

o Values, objects, names should be converted

o Heavy communication across LLVM-JVM border may slow down execution

o Inthat case, it may be more useful to compile JVM languages into native image

o Butit's probably as far as one can go in integrating JVM & C languages

17

&eternal Complications

Language specific build systems
o Very elaborated make files
Language specific deployment systems

o Silently installing dependencies
[] Pip, conda, node, ...

Specific bridges between languages

o Often, internal implementation uses other languages
[Python packages often contains C code, ...

Language versions

o It's impossible to support all language versions and dialects
[Python 2 vs 3, ...

Complex project specific environments

long list of projects which have already been ported/migraled|interfaced.
The moat popular & least proprietary ones.

18

vy

Future of Programming

The Frameworks will consist of various components ...
o Third-party black-boxes
o Written by Al
o Legacy boxes

Sometimes, we may not even know (or care) what is the
implementation language

o This already works in the classical JVM
Languages will be used for their strong points (Scala for parallelism,
JavaScript for Graphics,...)
Seamless (plug-in) ...
It's important to really separate data from algorithms and logic (finally)

Can rewrile just one part of the aystem in another (more suilable) language,
7ind compile into native execulable.

Successfully Tested on:
> http://hrivhac.web.cern.ch/hrivnac/Activities/Packages/FinkBrowser

o https://github.com/hrivnac/FinkBrowser
> https://hrivnac.web.cern.ch/hrivhac/Activities/Packages/Lomikel
o https://github.com/hrivhac/Lomikel

> http://hrivhac.web.cern.ch/hrivhac/Activities/Packages/Atlascope
o https://gitlab.cern.ch/atlas-event-index/GraphDB

Next atep: Try on a real-life big project.

20

http://hrivnac.web.cern.ch/hrivnac/Activities/Packages/FinkBrowser/
https://github.com/hrivnac/FinkBrowser
https://hrivnac.web.cern.ch/hrivnac/Activities/Packages/Lomikel
https://github.com/hrivnac/Lomikel
http://hrivnac.web.cern.ch/hrivnac/Activities/Packages/Atlascope
https://gitlab.cern.ch/atlas-event-index/GraphDB

Backup Slides

vy

vy

Java
Java

High-level programming environment
o Java Language (and compiler) + Java Virtual Machine (runtime) + standard libraries
Created 1995 by James Gosling for Sun
Major implementations:
o Oracle
o OpendVM (GPL) - the reference
Evolves following formal Java Community Process via Java Enhancement Proposal (JEP) and Java
Specification Requests (JSR)
o All standard features should have the reference implementation and the conformity test suit
Two release per year (March, September)
o Current release: 17 (18 should be released today)
o We are mostly using: 8, sometimes 11
o Early access already for: 19
Yearly Java One Conference @ San Francisco
Almost completely backward compatible (i.e. one can compile/run old programs in new Java), except for
some newly introduced keywords (like assert)
Very dynamic and flexible environment
o Introspection, Memory Management, ...
Many monitoring and profiling tools (thanks to introspection) 29

Java Performance
Java

> Performance:

O
O
o

o

As other languages: math, graphics,... (as they are all calling the same implementation behind)

Faster than other languages: OO features, memory management, parallelism, dynamic optimisation

Slower than other languages: matrix manipulations (as no native matrices), some numerical operations (a cost for
exact reproducibility), startup (as should load VM and perform initial optimisation)

Needs more memory (to enable reflection, memory management and allow dynamical features and runtime
optimisation)

> Comparing performance is very difficult

O

o
o
o
O

Startup vs warmup vs peak

Throughput vs latency vs memory

Min vs max vs mean

Environment may be tuned for a specific performance requirements

Should compare on real applications, but then comparing not only language
m Should include aux functionality (memory management, at least some reflection, often parallelism,...)

23

vy

Java Object Model

Very sophisticated mechanism for creating Objects from different sources via hierarchy
of ClassLoaders (what ‘new’ does)

Allows constructing Obijects like Lego

o System classes
From JAR files ClassLoader loader = new MyClassLoader(...);

Object o = loader.loadClass(“MyNamespace.MyClass”).newInstance();

{

Java

From Network
As Java Beans (Web Service)
Via Serialisation, object databases (e.g. reading of Root files)
o Using Aspects (= enhancing objects at runtime)
Full class name includes classloader namespace + class name

o So we can have different classes with the same name in one program
m Allows for object migration (= one object changes its class)
m Allows for dynamic re-loading of classes

Base for reflection, memory management,...

May be tricky and non-intuitive to use (e.g. anti-inheritance pattern)
o Sometimes misused (log4j ?)
o Application developer rarely needs it

Since Java 9 extended to Java Modules (which can explicitly import/export/hide
components)

Foundation for multi-language environment
o Classloaders loading from different languages into the same runtime

o
(0]
o
o

24

Generaling GraalVM native image . l
ia betler than re-wrili
JavalPython)...in (‘:72%0 J1Tvs AOT raa

JIT = Just In Time Compiler: compiling into bytecode (jar), dynamically re-compiling at runtime by JVM
(HotSpot)

AOT = Ahead Of Time Compiler: compiling into native binary (exe, so)

o

o
o
o

o
o

Can compile jar into exe, so

Very complex due to extremely dynamic nature of Java - tries to guess what is going on during runtime

Runs initialisation and creates initial heap during compilation

Close World Assumption: All dependencies should be available at compile time (not true for JIT), no dynamic loading
May have to provide hints about dynamic usage (reflection operations, class initialisation, lambdas, annotations, service
loaders,...)

m Can use Tracing Agent for that
m Can put this configuration in jar META-IN/native-image

Can configure to tune the image (memory vs speed,...)
May need JVM at runtime (fallback image) to handle some dynamical operations

Without GraalVM GraalVM Native Image GraalVM Native Image:

Load configuration file
Native Image (default) at build time
Startup Speed Peak Throughput
* e
J lT Run time
Load CIasses
P Build time
Low Memory — Reduced Max e
Footprint Latency
Load Conflgurauon File Load Configuration File

i \L Build time
Run time

Run Workload Run Workload Run Workload 25

Small Packaging

Java native methods

Boundary

C wrappers

Traditional JN1

alow, complex

Java wrappers

Boundary

Traditional JNA
Jaater, complex

Java native methods

Boundary

Java SVM Wrappers

JN via Native Tmage

Jaat, simpler

GraalVM.

Boundary

Native Tmage
Jaat, simple 26

