
New EvenǓ IndȔ

Julius Hrivnac, IJCLab
ATLAS, 6/Dec/2021

➢ Event Index
➢ Graph Databases
➢ Atlascope

EvenǓ IndȔ
➢ Catalog of all ATLAS events (data and MC) in all their versions (RAW -> … -> DAOD)

○ With basic characteristics, triggers and references to physical datasets
○ > 360 * 10^9 entries

➢ Main Use cases:
○ Event Lookup: fast mapping of (set of) eventNumber+runNumber -> physical dataset

■ Grigori in Jan’22
○ Searching for events satisfying certain triggers
○ Overlaps between datasets (AOD, DAODs)
○ Overlaps between triggers within a dataset, triggers statistics
○ Finding errors in data processing or simulation (multiple copies of events,...)

➢ Incarnations:
○ Tag Database (retired): Included also volatile (physical) information, based on Oracle SQL
○ Current EI (in production): Based on Hadoop HBase (NoSQL database)
○ Run 3 EI (under development): Based on Phoenix SQL database + JanusGraph Graph

database over HBase NoSQL database
➢ Event Index + AMI + Rucio form global metadata service allowing to locate all ATLAS data

Architecturǂ
Atlascope

Client

Phoenix
db

JanusGraph
db

HBase
storage

Atlascope
Web Application

imported
objects

new
objects

proxy
objects

import: dataset, …
+ create: amitag, run,...

access: event,...
(import, if needed)

Graph

SQL

➢ Phoenix SQL API
provides interface
compatible with other
ATLAS SQL databases
(mostly Oracle)

➢ Graph API provides
flexible and intuitive view
of data

➢ Some Phoenix objects
are imported (replicated)
into Graph, others are
proxied (and can be
replicated on request),
and others can be
created native to Graph

Schemƾ
➢ In Phoenix, mirrored to Graph:

○ Dataset: runno, project, streamname, prodstep,
datatype, version, tid, dspid, dstypeid, smk, events_rucio,
rucio_at, files, events, events_uniq, events_dup,
files_dup, state, updated_at, dups_at, trigger_at,
is_open, has_raw, has_trigger, prov_seen, sr_cnt,
sr_clid, sr_tech

➢ In Phoenix, proxied to Graph:
○ Event: dspid, dstypeid, eventno, seq, tid, sr, mcc,

mcw, pv, lb, bcid, lpsk, etime, phid, tbp, tap, tav, lb1,
bcid1, hpsk, lph, ph

➢ In Graph:
○ Project (data18_13TeV,...)

○ Stream (physics_Main,...)

○ Run (348894,...)

○ Amitag (n0002_r13084_p4397,...)

HEP Storagǂ
➢ Traditional data structures in HEP:

○ tuples (tables)
○ trees
○ nested tuples (trees of tuples)
○ relational (SQL-like)

➢ Schema-based or schema-less
➢ But many of HEP data are graph-like & schema-less

○ Entities with relations
➢ Not handled by standard tree-ntuple storage

○ Relations should be added and interpreted outside storage
➢ Not well covered by relational (SQL) databases

○ We need to add new relations, not covered by schema
➢ Difficult to manage by Object Oriented (OO) databases or serialisation

○ Problem to distinguish essential relations from volatile ones

Morǂ GeneraǍ Remarkǒ

abouǓ

Storagǂ & Graphǒ

GrapǇ Databaseǒ

➢ Graph databases have existed for a long time
○ Matured only recently thanks to Big Data & AI (Graph NN)
○ Very good implementations & (de-facto) standards available
○ Rapid evolution

➢ Moving essential structure from code to data
○ Together with migration from imperative to declarative semantics
○ Things don’t happen, but exist
○ Structured data with relations facilitates Declarative Analyses

➢ Data elements appear in a Context
○ Which simplifies understanding, analyses and processing

➢ The difference between SQL and Graph database is similar as
between Fortran and C++/Java

○ On one side, a rigid system, which can be very optimized
○ On the other side, a flexible dynamical system, which allows expressing

of complex structures
➢ Graph database is a synthesis of OO and SQL databases

○ Expressing web of objects without fragility of OO world
○ Capturing only essential relations, not an object dump

➢ Storing Graphs in a database
➢ Graph = (Vertexes, Edges), G = (V, E)
➢ Vertices and Edges have properties

GrapǇ DB: Languageǒ
➢ Direct manipulation of Vertices and Edges

○ Always available from all languages
○ Doesn’t use full graph expression power

➢ Cypher (and GQL)
○ Pure declarative
○ Inspired by SQL and OQL

■ But applied to schema-less database
○ Available to all languages via JDBC-like API

■ Semantic mismatch, passed as String
■ There is a wall between coder and database, with a thin

tunnel, only Strings can pass
○ Coming from Neo4J

■ Accepted as a standard
■ Neo4J can be also used with Gremlin

➢ Gremlin
○ Functional syntax
○ Originated from Groovy, but available to all languages

supporting functional programming
○ Integrated in the language

MATCH (a:run)-[:has]->(b:dataset)
 WHERE a.rnumber = 98765
 RETURN b.name

g.V().has('run', 'rnumber', 98765)
 .out(‘has’)
 .values(‘name’)

GrapǇ Databaseǒ for HEP
➢ A lot of ongoing HEP effort to make execution more structured and parallel

○ Parallel programming
○ Functional programming

➢ Less effort (so far) to structure the data
○ More structured data => simpler and faster access

➢ Graphical Database advantages
○ More transparent code

■ Stable data structure is handled in the storage layer
○ Suitable for Functional Style and Parallelism
○ Suitable for Deep Learning
○ Suitable for Declarative Analyses
○ Can help with Analysis Preservation
○ Language & Framework neutral

➢ How to proceed
○ Store (all) data in a real Graph database
○ Build a Graph layer on top of the existing storage

■ Close to DB layer
■ In the application layer

ParǓ of EvenǓ IndȔ iǒ storeǁ iǏ ƾ GrapǇ Databasǂ

Schemƾ
➢ In Phoenix, mirrored to Graph:

○ Dataset: runno, project, streamname, prodstep,
datatype, version, tid, dspid, dstypeid, smk, events_rucio,
rucio_at, files, events, events_uniq, events_dup,
files_dup, state, updated_at, dups_at, trigger_at,
is_open, has_raw, has_trigger, prov_seen, sr_cnt,
sr_clid, sr_tech

➢ In Phoenix, proxied to Graph:
○ Event: dspid, dstypeid, eventno, seq, tid, sr, mcc,

mcw, pv, lb, bcid, lpsk, etime, phid, tbp, tap, tav, lb1,
bcid1, hpsk, lph, ph

➢ In Graph:
○ Project (data18_13TeV,...)

○ Stream (physics_Main,...)

○ Run (348894,...)

○ Amitag (n0002_r13084_p4397,...)

Bacǌ tǐ EvenǓ IndȔ

GremliǏ ClienǓ
add a vertex ‘experiment’ with the name ‘ATLAS’
g.addV('experiment').property('ename', 'ATLAS')
add edges ‘owns’ from all vertices ‘project’ to vertex ‘experiment’ ‘ATLAS’
g.V().hasLabel('project')
 .addE('owns')
 .from(g.V()
 .hasLabel('experiment')
 .has('ename', 'ATLAS'))
show datasets with more events or number of events in an interval
g.V().has(“run”, “number”, 358031)
 .out()
 .has(“nevents”, gt(7180136))
 .values(“name”, “nevents”)
g.V().has(“run”, “number”, 358031)
 .out()
 .has(“nevents”, inside(7180136, 90026772))
 .values(“name, “nevents”)

➢ Functional syntax
○ On top of other languages

➢ Functional & navigational semantics
➢ Very intuitive, no special syntax needed

(using existing functional syntax), easy
integration.

➢ Database just accessed as objects with
structure and relations.

○ Nested collections with links.
➢ Can use functional API (streams) and

Lambda.
➢ No semantic mismatch.

○ Using one language.
➢ Came from Groovy

○ (Almost) identical for other supported
languages (Python, Scala, Go,...).

➢ Both search and traversal steps.
➢ Search steps can be boosted by indexes.
➢ Functions can be loaded on server for

faster execution.

Event-Lookup function (server side UDF)
def el(run, event, g) {
 e = g.V().hasLabel('run') # all runs
 .has('rnumber', run) # selected run
 .out('fills') # all datasets filling that run
 .out('keeps') # all events kept in that dataset
 .has('enumber', event) # selected event
 .values('guid') # its guid
 }

CLI command
curl -XPOST -d '{"gremlin":"el(run, event)"}' http://ei-gremlin-server.cern.ch:8182
or using standard gremlin client
gremlin << EOF
:remote connect tinkerpop.server $janusgraph_home/conf/remote.yaml
el(run, event)
EOF

.out(‘fills’)

.out(‘keeps’)

.has(‘enumber’, event)

http://ei-gremlin-server.cern.ch:8182

GremliǏ ClienǓ ǘampleǒ

// Create new collection of events
eventsCollection = g.addV('ecollection')
 .property('name','MyEvents');

// Find all events satisfying certain conditions
// and connect them to the event collection
g.V().has('lbl', 'event')
 .has(...some selection...)
 .collect {
 eventsCollection.addEdge('contains', it)
 };

// Event Lookup using Graphs
g.V().has('lbl', 'dataset'). // all datasets
 has('runno', 801122). // datasets with runno == 801122
 out('has'). // all ‘has’ children (= events)
 has('eventno', 15379) // all events with eventno == 15379

Whiteboarǁ ǬnctionalitǗ

(C)PythoǏ ClienǓ
#pip install gremlinpython

from gremlin_python import statics
from gremlin_python.process.anonymous_traversal import traversal
from gremlin_python.process.graph_traversal import __
from gremlin_python.process.strategies import *
from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection
from gremlin_python.process.traversal import T
from gremlin_python.process.traversal import Order
from gremlin_python.process.traversal import Cardinality
from gremlin_python.process.traversal import Column
from gremlin_python.process.traversal import Direction
from gremlin_python.process.traversal import Operator
from gremlin_python.process.traversal import P
from gremlin_python.process.traversal import Pop
from gremlin_python.process.traversal import Scope
from gremlin_python.process.traversal import Barrier
from gremlin_python.process.traversal import Bindings
from gremlin_python.process.traversal import WithOptions

statics.load_statics(globals())

g = traversal().withRemote(DriverRemoteConnection('ws://aiatlas073.cern.ch:8182/gremlin','g'))

x = g.V().has('lbl', 'dataset').has(...).valueMap().next()

EasǗ integratioǏ iǏ

Atlaǒ Frameworǌ

Clientǒ ǣisǓ iǏ mǿǓ languageǒ

Web ClienǓ

➢ Built on top of Gremlin Client
➢ Generic Graph Browser

○ Customised for ATLAS Event Index
○ Another customisation exists for

LSST

Web ClienǓ - InitiaǍ Top Panelǒ
Database to use
(‘Proxy’ tunnels requests to the database
through the Web Service to by-pass firewalls)

Initial Gremlin request

Options for interactive Graph manipulation

Web ClienǓ - GrapǇ witǇ Tablǂ View

A Click on an element (Vertex
or Edge) will offer a set of
available operations (internal
or external applications)

A Table operation will show
all visible elements of the
same type in a tabular form

Table data can be plotted in various ways

Executed actions
(so they can be re-used from the command line)

Table view customisation
(visible columns, searches,...)

Datasetǒ GraphicaǍ View
AOD dataset

non-AOD dataset

datasets overlap

dataset unique events

Overlapǒ betweeǏ Tagǒ, Uniquǂ Eventǒ

overlap within tag
(with color of the tag)

overlap between tags
(grey)

unique events
(black dashed)

DataseǓ Detailǒ
click here

Overlap Detailǒ

click here

SuǞetǒ
subset

identity
(mutual subset)

Uniquǂ Eventǒ Detailǒ

click here

AlǍ Overlapǒ of AODǒ
show all overlaps within a tag show all overlaps between tags

Trigger Overlapǒ

L1

HLT

Clusterǒ

Web ClienǓ - Correlograǎ
Various types of data views

Web ClienǓ - Overlapǒ betweeǏ Datasetǒ
Dataset names

Overlaps as circles

Overlaps as numbers

Hovering over an overlap element will
give a Venn diagram with detailed
analyses

Web ClienǓ - Plotǒ
Table columns can be presented in
various plot types

➢ Event Index Home:
https://atlas-event-index.cern.ch/

➢ Presentation to CHEP’2019:
https://docs.google.com/presentation/d/12UnR3iDWmYYKUQuZ5Hu0RdKbZAXC5uc3-LFKvgBbehs/edit?usp=sharing

https://atlas-event-index.cern.ch/
https://docs.google.com/presentation/d/12UnR3iDWmYYKUQuZ5Hu0RdKbZAXC5uc3-LFKvgBbehs/edit?usp=sharing

