
Atlascope

Julius Hrivnac, IJCLab
Event Index WS, Virtual, 15/6/2020

➢ Architecture
➢ API
➢ Web Service
➢ Virtual Collections
➢ Other Possibilities

Architecture
➢ The architecture is simple:

○ A Graph layer on top of an SQL database
○ A table corresponds to a Vertex type (label)
○ A row corresponds to an individual Vertex
○ Graph layer is transparent, Vertexes are created when first requested,

then stored in GraphDB (lazy creation)
○ SQL table relations are automatically represented by graph Edges
○ New Vertexes and Edges can be freely created in the Graph layer

(independent on the SQL storage)
○ Collections are represented by Vertexes with Edges to contained

Vertexes
○ All Graph tools are then available for access, navigation, analyses and

visualisation
➢ Very little of code

○ Using a lot of (mostly Apache) projects
○ Standard APIs, replaceable components

Architecture
TinkerPop

Gremlin Client
TinkerPop

Gremlin Server

Phoenix Connector
UDF

Gremlin (Janus Graph)

SQL (Phoenix)

HBase

Tomcat

GraphDB WS

SQL/JDBC
over Socket

Gremlin
(JSON over REST)

our code (in red)

Happy User

Architecture
➢ TinkerPop is a Graph Database Framework for Gremlin-capable databases

○ Included components can be replaced
■ HBase with Cassandra
■ JanusGraph with Neo4J
■ …

➢ Gremlin client understands most functional-capable languages
○ Java, Scala, Python,...

➢ The only locally developed components are:
○ Phoenix Connector UDF:

■ To map Phoenix data to Objects
● Mapping done by hand, but can be automatised

■ To (lazily) wrap them as Graph Vertexes and Edges
■ Over Socket connection

● To isolate Phoenix & Graph frameworks
○ Originally due to incompatibilities between third-party libraries used by

Phoenix & JanusGraph, but can be useful to isolate them anyway
■ Can work with any JDBC/SQL connection

○ GraphDB WS:
■ Generic (Gremlin) JS Web Service
■ Customisable by smart Stylesheet (JSON with Gremlin & JS)

API

PhoenixProxyClient

List<Element> search(Element prototype)
Element get(Vertex vertex)
List<Vertex> vertexes(Object… vertexIds)

Element

Vertex vertex()

ppc = new PhoenixProxyClient("127.0.0.1", 5000); // socket

// Dataset prototype => List<Dataset>
dataset = ppc.search(new Dataset().set("runnumber", 140571)).get(0);
// Dataset => its Vertex
vertex = dataset.vertex();

// Vertex spec => stream of Vertex (created, if needed)
vertex = g.V().has("dataset", "runnumber", 140571).next();
// Vertex => its Dataset
dataset = ppc.get(vertex);

// All vertexes (created, if needed)
vertexes = ppc.vertexes("dataset", "runnumber", 140571);
vertexes = ppc.vertexes("event", "eventnumber", 19233949);

➢ Vertexes are created lazily, i.e.
only when first time asked for

➢ Some Edges are added
automatically

➢ Other Vertex properties and new
Edges can be added by users

➢ Graph layer serves as an
extensible cache

Vertex

Dataset

Event

GraphDB World

OO/SQL World

Web Service

stylesheet.nodes.dataset = {
 graphics: {
 label:{gremlin:"sideEffect(values('prodstep').store('4'))...."},
 title:"datatype",
 subtitle:{gremlin:"values('count_events').join().toString().concat(' events')"},
 group:{gremlin:"values('version')"},
 shape:{js:"if(title == 'dataset:AOD') {shape = 'hexagon';} else {shape = 'dot';}"},
 image:" ",
 borderRadius:"0",
 borderWidth:"1",
 borderDashes:[1,0],
 value:{gremlin:"values('count_events').join().toString()"}
 },
 actions: [
 {name:"Rucio", url:{gremlin:"..."}},
 {name:"AMI", url:{gremlin:"..."}}
]
 }
...

➢ Completely generic, connects to Gremlin server.
➢ Stylesheet controls graphics and context sensitive actions.
➢ It understands Gremlin and JavaScript.

Actions, which can be performed
on the Vertex,
may be urls to external services

Interactive presentation style

Virtual Collections

// Create new collection of events
eventsCollection = g.addV('ecollection')
 .property('name','MyEvents');

// Find all events satisfying certain conditions
// and connect them to the event collection
g.V().hasLabel('event')
 .has(...some selection...)
 .collect {
 eventsCollection.addEdge('contains', it)
 };

graph.tx().commit();

Virtual Collection = Collection Vertex + Edges to contained Elements

Virtual Collections

➢ All kinds of collections can be created
○ Manually
○ By automatic (periodic) tasks
○ By ad-hoc (exploratory) tasks

➢ Collections can have additional properties (annotations).
➢ They can be connected to other entities.
➢ Accessible RW remotely via Gremlin server

○ REST server with convenient clients in many languages
➢ Can be accessed from the Web Service.

○ Creation via Web Service can be implemented if
needed.

Other Possibilities
➢ Creating relations (=Edges) between existing entities

○ Events, Datasets, Runs, Streams, AMItags,...
➢ Obvious relations are created automatically
➢ Others can be results of analyses tasks or added by hand
➢ Examples (some are already implemented on top of the

current framework, but will be more natural on top of graphs):
○ Edges between Datasets can carry information about

overlaps
○ Trigger Statistics/Overlaps can be represented by new

Vertexes, connected to their Datasets
■ They can have internal structure (Vertex=trigger,

Edge=overlap,....)
➢ Global, structured view of all Atlas data

○ Easy navigation and manipulation
○ Natural structure (entities with relations)
○ Opens new possibilities of analyses (AI, Graph

Theory,...)
➢ No impact on the SQL backend
➢ Can work on top of any SQL database

Info

Using (old) Zbyszek setup @CERN
Need SQL schema & JDBC URL to test with new database

Home: https://hrivnac.web.cern.ch/hrivnac/Activities/Packages/Atlascope
GIT: https://gitlab.cern.ch/atlas-event-index/GraphDB

https://hrivnac.web.cern.ch/hrivnac/Activities/Packages/Atlascope/
https://gitlab.cern.ch/atlas-event-index/GraphDB

