
Using Graph Databases

➢ HEP storage
➢ Graph Databases
➢ Atlas Event Index

○ Graph Database Prototypes
➢ Graph Databases for HEP

○ What they can do for us

Julius Hrivnac (LAL Orsay) on behalf of the ATLAS Collaboration

See also Poster 211

Illustrating Graph Databases potential on new ATLAS Event Index prototypes.

HEP Storage
➢ Traditional data structures in HEP:

○ tuples (tables)
○ trees
○ nested tuples (trees of tuples)
○ relational (SQL-like)

➢ Schema-based or schema-less
➢ But many of HEP data are graph-like & schema-less

○ Entities with relations
➢ Not handled by standard tree-ntuple storage

○ Relations should be added and interpreted outside storage
➢ Not well covered by relational (SQL) databases

○ We need to add new relations, not covered by schema
➢ Difficult to manage by Object Oriented (OO) databases or serialisation

○ Problem to distinguish essential relations from volatile ones

Graph Databases
➢ Graph databases have existed for a long time

○ Matured only recently thanks to Big Data & AI (Graph NN)
○ Very good implementations & (de-facto) standards available
○ Rapid evolution

➢ Moving essential structure from code to data
○ Together with migration from imperative to declarative semantics
○ Things don’t happen, but exist
○ Structured data with relations facilitates Declarative Analyses

➢ Data elements appear in a Context
○ Which simplifies understanding, analyses and processing

➢ The difference between SQL and Graph database is similar as
between Fortran and C++/Java

○ On one side, a rigid system, which can be very optimized
○ On the other side, a flexible dynamical system, which allows expressing

of complex structures
➢ Graph database is a synthesis of OO and SQL databases

○ Expressing web of objects without fragility of OO world
○ Capturing only essential relations, not an object dump

➢ Storing Graphs in a database
➢ Graph = (Vertexes, Edges), G = (V, E)
➢ Vertices and Edges have properties

Graph DB: Languages
All three methods can be used to access the same database

(e.g. using Cypher for query and Gremlin for traversal).

➢ Direct manipulation of Vertices and Edges
○ Always available from all languages
○ Doesn’t use full graph expression power

➢ Cypher (and GQL)
○ Pure declarative
○ Inspired by SQL and OQL

■ But applied to schema-less database
○ Available to all languages via JDBC-like API

■ Semantic mismatch, passed as String
■ There is a wall between coder and database, with a thin

tunnel, only Strings can pass
○ Coming from Neo4J

■ Accepted as a standard
■ Neo4J can be also used with Gremlin

➢ Gremlin
○ Functional syntax
○ Originated from Groovy, but available to all languages

supporting functional programming
○ Integrated in the language

MATCH (a:run)-[:has]->(b:dataset)
 WHERE a.rnumber = 98765
 RETURN b.name

g.V().has('run', 'rnumber', 98765)
 .out(‘has’)
 .values(‘name’)

Atlas Event Index
➢ ATLAS Event Index Service keeps references to all real and simulated ATLAS events. Hadoop Map files

and HBase tables are used to store the Event Index data, a subset of data is also stored in the Oracle
database.

○ Contains information about events, datasets, streams, runs,... - and their relations.
➢ Several user interfaces are currently used to access and search the data. From the simple command line

interface, through programmatical API to sophisticated Graphical Web Services.
➢ History

○ Original Event Index (EI) in Oracle
■ Too rigid (can’t easily add columns, relations), other problems

○ Migrated to Hadoop
■ Map files in HDFS
■ Flexible
■ Too slow for searching (ok for processing)
■ Typeless

○ Partially migrated to HBase
■ Two tables: Catalog + Events
■ Tables contain a lot of ad-hoc relations (references to other entries)

● We have in fact implemented a poor-man’s GraphDB on top of HBase
○ Several prototypes developed to study next generation Event Index (to be fully deployed for Run-3, end 2020), using Graph

Database in different ways:
■ Prototype storing all EI data directly in JanusGraph database over HBase storage
■ Prototype storing data in a HBase table with Phoenix SQL interface, Graph structure added via another auxiliary HBase table

The ATLAS EventIndex for LHC Run 3 - Track 4 on Th at 14:45

Prototype 1:
JanusGraph on top of HBase

➢ Subset of data imported into full JanusGraph Database storing data in an
HBase table

➢ Part of existing functionality implemented
○ Large part of code (handling relations and properties) moved to structure of the graph

➢ Most of the graphical part implemented
○ By standalone JS implementation

HBase

JanusGraph

Gremlin API

Prototype 1

Implementations Choices

➢ De-facto standard language/api: Gremlin
○ Gremlin is a functional, data-flow language to traverse a property graph. Every

Gremlin traversal is composed of a sequence of (potentially nested) steps. A step
performs an atomic operation on the data stream. Every step is either a map-step
(transforming the objects in the stream), a filter-step (removing objects from the
stream), or a sideEffect-step (computing statistics about the stream).

○ Gremlin supports transactional & non-transactional processing in declarative or
imperative manner.

○ Gremlin can be expressed in all languages supporting function composition &
nesting.

○ Supported languages: Java, Groovy, Scala, Python, Ruby, Go, …
➢ Commonly used framework: TinkerPop
➢ Leading implementation: JanusGraph

○ Supported storage backends: Cassandra, HBase, Google Cloud, Oracle BerkeleyDB
○ Supported graph data analytics: Spark, Giraph, Hadoop
○ Supported searches: Elastic Search, Solr, Lucene
○ Growing popularity of Neo4J

➢ Chosen visualisation: visj.org
○ Many others exist

Functional syntax with additional navigational semantics !

Prototype 1

Gremlin Syntax
add a vertex ‘experiment’ with the name ‘ATLAS’
g.addV('experiment').property('ename', 'ATLAS')
add edges ‘owns’ from all vertices ‘project’ to vertex ‘experiment’ ‘ATLAS’
g.V().hasLabel('project')
 .addE('owns')
 .from(g.V()
 .hasLabel('experiment')
 .has('ename', 'ATLAS'))
show datasets with more events or number of events in an interval
g.V().has(“run”, “number”, 358031)
 .out()
 .has(“nevents”, gt(7180136))
 .values(“name”, “nevents”)
g.V().has(“run”, “number”, 358031)
 .out()
 .has(“nevents”, inside(7180136, 90026772))
 .values(“name, “nevents”)

➢ Functional syntax
➢ Functional & navigational semantics
➢ Very intuitive, no special syntax needed

(using existing functional syntax), easy
integration.

➢ Database just accessed as objects with
structure and relations.

○ Nested collections with links.
➢ Can use functional API (streams) and

Lambda.
➢ No semantic mismatch.

○ Using one language.
➢ Came from Groovy

○ (Almost) identical for other supported
languages (Python, Scala, Go,...).

➢ Both search and traversal steps.
➢ Search steps can be boosted by indexes.
➢ Functions can be loaded on server for

faster execution.

Event-Lookup function (server side UDF)
def el(run, event, g) {
 e = g.V().hasLabel('run') # all runs
 .has('rnumber', run) # selected run
 .out('fills') # all datasets filling that run
 .out('keeps') # all events kept in that dataset
 .has('enumber', event) # selected event
 .values('guid') # its guid
 }

CLI command
curl -XPOST -d '{"gremlin":"el(run, event)"}' http://ei-gremlin-server.cern.ch:8182
or using standard gremlin client
gremlin << EOF
:remote connect tinkerpop.server $janusgraph_home/conf/remote.yaml
el(run, event)
EOF

.hasLabel(‘run’)

.has(‘rnumber’, run)

.out(‘fills’)

.out(‘keeps’)

.has(‘enumber’, event)

Prototype 1

http://ei-gremlin-server.cern.ch:8182

Prototype 2:
Phoenix Project

➢ Aim
○ Simple and flexible NoSQL storage (HBase)

■ Good experience
○ Compatibility with other SQL database (Phoenix API)

■ SQL used in other ATLAS components
○ Advantages of Graph Database

➢ Solution
○ Extend Phoenix/HBase storage with pure HBase storage

■ Sharing the same keys
○ So keeping Phoenix advantages (speed, SQL interface) for RO data
○ While opening for new possibilities, adaptability to changing environment
○ Phoenix/HBase for static data, HBase for dynamic data

➢ Data stored in pure HBase table with Phoenix SQL API
➢ Graph structure added via aux HBase table

○ ‘Lazy Graphs’: only created when needed
➢ Home-grown ‘object API’

○ With Gremlin subset API

HBase

Phoenix

Phoenix+
SQL

Object API
& Gremlin

Prototype 2

Architecture

Phoenix (HBase) HBase

key
key

key
key

key

key tag extension relation
key tag extension relation

key tag extension relation
key tag extension relation

key tag extension relation

object

➢ Both database share the same keys
➢ User sees one interface to both

○ All data of one key is represented by one Element
➢ HBase db is much smaller (only subset of data)
➢ Phoenix db is read-only
➢ HBase db is modifiable, it can contain

○ Simple Tags
■ They can be also used in search filter

○ Extensions with any object
■ E.g. Trigger statistics and overlap,

duplicated events list,...
○ Relations to other elements (like Graph DB)

■ E.g. overlaps between datasets

key tag extension relation

foreign keys

➢ HBase can also contain Elements without Phoenix partner: Hubs
○ They represent pre-defined virtual collections of Elements

■ E.g. Amitag, Stream, Run, Project,...
○ They can be extended and searched in the same way as other

Elements
➢ Ad-hoc virtual collections can be build also using Tags

Prototype 2
Creating Graph structure on top of an SQL database - a user sees one database.

RO

dynamic

"dataset": {
 graphics: {
 label:{gremlin:"sideEffect(values('prodStep').store('4')).sideEffect(values('dataType')......values().join().toString()"},
 title:"dataType",
 subtitle:{gremlin:"values('nevents').join().toString().concat(' events')"},
 group:{gremlin:"in().hasLabel('amitag').values('version')"},
 shape:{js:"if(title=='dataset:AOD') {shape = 'hexagon';} else {shape = 'dot';}"},
 value:{gremlin:"values('nevents').join().toString()"}
 },
 actions: [
 {name:"Catalog", url:"https://atlas-event-index.cern.ch/EIHadoop/CatalogView.jsp?query=dataset:"},
 {name:"Sample" , url:"https://atlas-event-index.cern.ch/EIHadoop/InspectView.jsp?view=txt&action=dump&climit=1&limit=10&query=dataset:"},
 {name:"Info" , url:"https://atlas-event-index.cern.ch/EIHadoop/InspectView.jsp?view=txt&action=info&climit=1&limit=10&query=dataset:"}
]
 },

GUI WS
➢ Generic Web Service graphical visualisation

○ Can display any Gremlin-compatible database
■ Visualisation can be customised via Stylesheet (JSON)

○ Implemented completely in JavaScript
■ So doesn’t need server-side application
■ Connects to standard Gremlin server to get JSON view of data

data

Gremlin-capable
Server

JS Client
@ local browser

presentation
stylesheet

Gremlin request
JSON answer

JSON
with

JS & Gremlin

WS GUI

1. Select period, run, ami tag,
stream, dataset or event

a. Or any other Hub (virtual
collection)

2. Get it, together with all related
entities and information stored
in EI

3. Each entity has a set of
possible actions to perform

4. Each entity can be annotated
5. Detailed search is possible

too

select
select

select

Direct API and REST Web Service also available.

1

2

3

5

➢ Very generic
➢ Very thin layer on top of

data
○ Structure is already

there
➢ Hierarchical navigation

○ A’la Google Earth
➢ Show all available data,

their relations and
properties

○ And all available
actions for them

Prototype 2

Added Values & New Possibilities
for Event Index

➢ Big part of the application code absorbed in Graph Database structure
○ Delegate implementation/optimisation details to suitable database framework
○ Database carries information about data structure which would otherwise have to be handled by the

application code
➢ Simple graphical access

○ JavaScript client connects directly do Gremlin server
➢ Using standards

○ So components can be replaced
■ JanusGraph with Neo4J,...
■ Hadoop with Cassandra,...

➢ Possibility of Creation of Virtual Entities
○ Virtual Collections

■ ‘Whiteboard’ functionality
■ Can create API allowing users creating their own (or group-wise) Collections

○ Persistent Requests results
■ Results can be stored as new objects with relations (cache functionality)

○ Query Spaces
■ Abstract space on top of data to allow faster searching and navigation

➢ Finding Higher level correlations
○ Multiple trigger overlaps between events, trigger pattern in data derivations,...

Performance
➢ Requests in general in three phases

○ First search of the initial entry point (event, dataset, run,...)
■ Could be optimised

● Natural order
● Indexes
● Elastic Search
● Spark
● More hierarchical navigation

○ Then navigation on the graph
■ Very fast

○ And finally accumulation of results
➢ Data can still be accessed directly, without Graph Database API

○ So with the same performance as non-GraphDB
○ Navigational step (instead of sub-search) can only speed it up

➢ In general:
○ Very fast retrieval
○ Slower import

■ Because import creates structures
■ Which are used in retrieval (simpler & faster)

Graph Databases for Functional Programming
➢ Relations (edges) can be considered as functions

○ Navigation as a function execution
○ From the user point of view, there is no difference in creating new object or navigating to it

■ Both operation can be ‘lazy’

➢ Functional processing and graph navigation (“Graph Oriented Programming”) can work very
well together

○ Using the same functional syntax
○ Both are realisation of Categories

■ Vertex == object, Edge == morphism
■ Functional program can be modeled as a Graphs
■ Graph data can be navigated using functions

○ Data ready for parallel access
➢ Very well implemented by Gremlin

Extending parallel-ready functional model from code to data !

General
Comments

Graph Databases for Deep Learning
➢ Neural Network itself is a Graph

○ Using Graph Database to describe NN itself
➢ In many cases, Neural Network handles Graph data (objects with relations)

○ They can operate either on individual nodes (Node-focused tasks)
○ Or on the whole graph (Graph-focused tasks)

➢ GraphNN can be seen as a generalisation of ConvolutionalNN
○ Non-geometric

➢ Possibility to impose constraints/knowledge to NN
○ Inductive Bias
○ Semantic Induction

Graph Neural Networks create a Natural environment for Deep Learning !

General
Comments

Graph Databases for HEP
➢ A lot of ongoing HEP effort to make execution more structured and parallel

○ Parallel programming
○ Functional programming

➢ Less effort (so far) to structure the data
○ More structured data => simpler and faster access

➢ Graphical Database advantages
○ More transparent code

■ Stable data structure is handled in the storage layer
○ Suitable for Functional Style and Parallelism
○ Suitable for Deep Learning
○ Suitable for Declarative Analyses
○ Can help with Analysis Preservation
○ Language & Framework neutral

➢ How to proceed
○ Store data in a real Graph database
○ Build a Graph layer on top of the existing storage

■ Close to DB layer
■ In the application layer

Described project uses Graphs to store higher level (meta)data.
Graphs can be also used to store Events and aux structures (geometry, conditions,...)
to give Graph functionality to all data.

Additional Information

See also Poster 211

Schema

run
rnumber

dataset
prodStep
dataType

status
nevents

unique_events
…

triggerOverlap: url
…

dname
name()

...

amitag
version

stream
sname

project
pname

experiment
ename

overlap
overlapping_events

overlapB
overlapC

ownscontains

has

fills

tags

event
enumber

LumiBlockN
…

XtrigChainsXXX: Set[String]
guid: Set[String]

...

➢ Should decide what is a
feature and what is a relation

➢ Arrows have only logical
meaning, they can be
navigated equally from both
sides

➢ Relations and features have
defined multiplicities (not
shown here) and types (int,
string, date,..., Set[...],...)

➢ Defined entities (and
combinations of them) can be
indexed for fast search

➢ Other features and relations
can be freely added to any
entity (vertex or edge)

keeps

Schema may be specified to speed up searching
and navigation.
Other nodes & vertexes can be added.

dataset_statistics
n

n3
...

holds derived

Prototype 1

Object API

ElementFactory ef = …;
Dataset dprototype1 = new Dataset();
dprototype1.set("runnumber", 140571).
 .set(“project”, “data09_900GeV”).
 …;
Dataset dataset1 = (Dataset)ef.search(dprototype1).get(0);
…
Dataset dataset2 = (Dataset)ef.search(dprototype2).get(0);
dataset2.add(new DOverlap(10, 30, 50, 40, dataset1));
dataset2.add(new Tag(“mytag”, “myvalue”));
dataset2.add(new TStat(......));
ef.update(dataset2);

1. Create a prototype of the Element
you want to search

2. Fill in known values
a. You can use SQL for

Phoenix part
b. You may choose which

backend (Phoenix, HBase
or both) is used for
searching and data filling

3. Send it to the ElementFactory
4. Get a set of satisfying Elements,

with all values filled (from both
Phoenix and HBase)

5. Add Tags, Relations of Extensions
to Elements

a. DOverlap is_a Relation
b. TStat is_a Extention

6. Update via ElementFactory
a. HBase will be updated

➢ REST and GUI WS are build on top of this API
➢ Subset of Gremlin API also available

Prototype 2

GUI WS

InterActive Relational/Graphical view of data.

Operations on View. Context-sensitive action
on selected element(s).

All information
About selected element.

Context-sensitive action
command output.

Operation feedback.

Datasets Graphical View

AOD dataset

non-AOD dataset
datasets overlap

dataset unique events

cluster of datasets
with the same AMI tag

Overlaps, Unique Events

overlap within tag
(with color of the tag)

overlap between tags
(grey)

unique events
(black dashed)

Details

dataset details

dataset overlaps details

unique events details

subset

identity
(mutual subset)

Clusters

Trigger Overlaps

Overlaps Venn Diagrams

Trigger Overlaps for LB Ranges

Performance Example
Event Lookup gremlin> el(358031, 775206623, g).profile()

==>Traversal Metrics
Step Count Traversers Time (ms) % Dur
===
JanusGraphStep([],[~label.eq(event), enumber.eq... 1 1 204.805 75.74
 _condition=(~label = event AND enumber = 775206623)
 _isFitted=true
 _query=multiKSQ[1]@2147483647
 _index=event:enumber:u
 _orders=[]
 _isOrdered=true
 optimization 4.614
 optimization 130.444
 backend-query 1 7.742
 _query=event:enumber:u:multiKSQ[1]@2147483647
JanusGraphVertexStep(IN,[keeps],vertex) 1 1 25.560 9.45
 _condition=type[keeps]
 _isFitted=true
 _vertices=1
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a55b7f
 _orders=[]
 _isOrdered=true
 optimization 11.927
 backend-query 1 3.103
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a55b7f
JanusGraphVertexStep(IN,[fills],vertex) 1 1 10.388 3.84
 _condition=type[fills]
 _isFitted=true
 _vertices=1
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a605c1
 _orders=[]
 _isOrdered=true
 optimization 7.661
 backend-query 1 1.442
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a605c1
HasStep([rnumber.eq(358031)]) 1 1 13.129 4.86
SelectOneStep(last,e) 1 1 0.993 0.37
NoOpBarrierStep(2500) 1 1 0.159 0.06
JanusGraphPropertiesStep([guid],value) 2 2 14.800 5.47
 _condition=type[guid]
 _isFitted=true
 _vertices=1
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b11f98a7
 _orders=[]
 _isOrdered=true
 optimization 7.478
NoOpBarrierStep(2500) 2 2 0.568 0.21
 >TOTAL - - 270.406 -

75% of the time is spend by the entry point search,
following graph traversal is very fast.

This was the first request,
the second one will be cca 10x faster
(even on different event).

