
Data-centric Graphical User Interface
of the ATLAS Event Index Service

➢ The original implementation was organized by service type (event lookup,
dataset overlaps, trigger statistics,...)
○ Each service gives access to all relevant data

➢ Following user requests, the User Interface has evolved into a system
organized by data entity (events, datasets, collections, runs,...)
○ Each entity gives access to all available services
○ While the underlying implementation was still organized by service type

➢ New implementation (under development for Run 3) is organized by data
entity
○ Two prototypes were implemented, the Prototype 2 has been selected for

the final implementation
➢ Navigation is provided via dynamic hierarchical graph-like overview of all

available data and data collections
➢ Data are shown together with their relations, ownership, containment or

overlaps
➢ Some actions are provided directly by the Event Index system, others are

interfaces to various external ATLAS services
➢ In many cases, specialised views are offered for detailed data inspection

○ Trigger histograms
○ Dataset overlaps
○ Trigger overlaps
○ ...

➢ Prototype 1
○ Directly storing data in JanusGraph database (on top of HBase)
○ Accessing them via standard Gremlin interface of the TinkerPop

framework
➢ Prototype 2 - selected for Run 3

○ Storing data in HBase tables with Phoenix SQL API
■ To allow interoperability with other SQL-based ATLAS services

○ With additional HBase tables adding (lazy) graph structure on top
➢ Very generic Dynamical Web Service GUI

○ In principle re-usable for any Graph-like data
○ Customizable via stylesheets

➢ The global dynamical interactive view of all ATLAS data
○ With relations between data entities
○ Giving access to all available services

➢ User-extensible
➢ Usable for AI analyses

ATLAS Event Index Service keeps references to all real and simulated ATLAS events. Hadoop Map files and HBase tables are used to
store the Event Index data, a subset of data is also stored in the Oracle database. Several user interfaces are currently used to access
and search the data. From the simple command line interface, through programmatical API to sophisticated Graphical Web Services.

Phoenix (HBase) HBase

key

key

key

key

key

key tag extension relation

key tag extension relation

key tag extension relation

key tag extension relation

key tag extension relation

object

➢ Both database share the same keys
➢ User sees one interface to both

○ All data of one key is represented by one
Element

➢ HBase db is much smaller (only subset of data)
➢ Phoenix db is read-only
➢ HBase db is modifiable, it can contain

○ Simple Tags
■ They can be also used in search filter

○ Extensions with any object
■ E.g. Trigger statistics and overlap,

duplicated events list,...
○ Relations to other elements (Graph DB

emulation)
■ E.g. overlaps between datasets

key tag extension relation

foreign keys

➢ HBase can also contain Elements without Phoenix partner:
Hubs
○ They represent pre-defined virtual collections of

Elements
■ E.g. Amitag, Stream, Run, Project,...

○ They can be extended and searched in the same way
as other Elements

➢ Ad-hoc virtual collections can be build also using Tags

1. Select period, run, ami
tag, stream, dataset or
event
a. Or any other Hub

(virtual collection)
2. Get it, together with all

related entities and
information stored in EI

3. Each entity has a set of
possible actions to
perform (EI or external)

4. Each entity can be
annotated

5. Detailed search is
possible too
a. Could expose also

Phoenix SQL part

select

select

select

ElementFactory ef = …;
Dataset dprototype1 = new Dataset();
dprototype1.set("runnumber", 140571).
 .set(“project”, “data09_900GeV”).
 …;
Dataset dataset1 = (Dataset)ef.search(dprototype1).get(0);
…
Dataset dataset2 = (Dataset)ef.search(dprototype2).get(0);
dataset2.add(new DOverlap(10, 30, 50, 40, dataset1));
dataset2.add(new Tag(“mytag”, “myvalue”));
dataset2.add(new TStat(......));
ef.update(dataset2);

1. Create a prototype of the Element you want to
search

2. Fill in known values
a. You can use SQL for Phoenix part
b. You may choose which backend (Phoenix,

HBase or both) is used for searching and
data filling

3. Send it to the ElementFactory
4. Get a set of satisfying Elements, with all values

filled (from both Phoenix and HBase)
5. Add Tags, Relations of Extensions to Elements

a. DOverlap is_a Relation
b. TStat is_a Extention

6. Update via ElementFactory
a. HBase will be updated

Original Implementation
➢ Graph GUI on top of

non-Graph implementation

Prototype 2
➢ selected for ‘Run 3’ Event Index implementation

.hasLabel(‘run’)

.has(‘rnumber’, run)

.out(‘fills’)

.out(‘keeps’)

.has(‘enumber’, event)

Julius Hrivnac(1), Evgeny Alexandrov(2), Igor Alexandrov(2), Zbigniew Baranowski(3), Dario Barberis(4), Gancho Dimitrov(3), Alvaro Fernandez Casani(5), Elizabeth Gallas(6), Carlos
García Montoro(5), Santiago Gonzalez De La Hoz(5), Andrei Kazymov(2), Mikhail Mineev(2), Fedor Prokoshin(2), Grigori Rybkin(1), Javier Sanchez(5), Jose Salt(5), Miguel Villaplana(7)
on behalf of the ATLAS Collaboration
(1) Laboratoire de l'Accelerateur Lineaire Orsay, (2) Joint Institute for Nuclear Research Dubna, (3) CERN, (4) Università e INFN Genova, (5) Instituto de Fisica Corpuscular Valencia, (6) University of Oxford, (7) Department of Physics, University of Alberta, Edmonton

See also Presentation Using Graph Databases in HEP (Track 4, Th, 15:15)

