
Phoenix+

Julius Hrivnac, LAL
EI WS, 3-5 June 2019, LAL

➢ Motivation
➢ Architecture
➢ Interface
➢ API
➢ Implementation
➢ Prototype
➢ GUI Status
➢ Notes

Motivation

➢ Migrating to Phoenix, with only SQL interface, we lose the flexibility present in the current
system

○ This makes implementation rigid & fragile wrt new or changed requirements
○ Yes, you can always create new SQL table with foreign keys, etc.
○ But designing complex SQL tablespace is tricky and easily goes haywired
○ Event more dangerous is adding new SQL features as needs come
○ Complex SQL queries are very difficult to optimise (remember TagDB)

■ Formulating a new SQL query is always risky
○ NoSQL storage, however, is made exactly for the iterative, unprevisible evolution

➢ Existing data-centric Web Service
○ Which has quite awkward connection with current EI Core
○ But UI WS part can be easily re-engineered for different backend

➢ Proposed solution:
○ Extend Phoenix storage with pure HBase storage

■ Sharing the same keys
○ So keeping Phoenix advantages (speed, SQL interface) for RO data
○ While opening for new possibilities, adaptability to changing environment
○ Phoenix for static data, HBase for dynamic data

Adding flexibility to Phoenix storage.

Open-Close
Architecture

Architecture

Phoenix HBase

key
key

key
key

key

key tag extension relation
key tag extension relation

key tag extension relation
key tag extension relation

key tag extension relation

object

➢ Both database share the same keys
➢ User sees one interface to both

○ All data of one key is represented by one Element
➢ HBase db is much smaller (only subset of data)
➢ Phoenix db is read-only
➢ HBase db is modifiable, it can contain

○ Simple Tags
■ They can be also used in search filter

○ Extensions with any object
■ E.g. Trigger statistics and overlap,

duplicated events list,...
○ Relations to other elements (like Graph DB)

■ E.g. overlaps between datasets

key tag extension relation

foreign keys

➢ HBase can also contain Elements without Phoenix partner: Hubs
○ They represent pre-defined virtual collections of Elements

■ E.g. Amitag, Stream, Run, Project,...
○ They can be extended and searched in the same way as other

Elements
➢ Ad-hoc virtual collections can be build also using Tags

Interface
➢ API - done
➢ REST Web Service (also serving CLI) - done

○ Serving text; xml or json can be added
➢ Graphical Web Service - under development

○ Adapting existing GraphDB WS

ElementFactory ef = …;
Dataset dprototype1 = new Dataset();
dprototype1.set("runnumber", 140571).
 .set(“project”, “data09_900GeV”).
 …;
Dataset dataset1 = (Dataset)ef.search(dprototype1).get(0);
…
Dataset dataset2 = (Dataset)ef.search(dprototype2).get(0);
dataset2.add(new Overlap(10, 30, 50, 40, dataset1));
dataset2.add(new Tag(“mytag”, “myvalue”));
ef.update(dataset2);

http://localhost:8888/EventIndex/REST.jsp?element=Event&search=eventnumber:57555&tag=golden:mychoice

http://localhost:8888/EventIndex/REST.jsp?element=Event&search=eventnumber:57555

API

ElementFactory ef = …;
Dataset dprototype1 = new Dataset();
dprototype1.set("runnumber", 140571).
 .set(“project”, “data09_900GeV”).
 …;
Dataset dataset1 = (Dataset)ef.search(dprototype1).get(0);
…
Dataset dataset2 = (Dataset)ef.search(dprototype2).get(0);
dataset2.add(new DOverlap(10, 30, 50, 40, dataset1));
dataset2.add(new Tag(“mytag”, “myvalue”));
dataset2.add(new TStat(......));
ef.update(dataset2);

1. Create a prototype of the Element
you want to search

2. Fill in known values
a. You can use SQL for

Phoenix part
b. You may choose which

backend (Phoenix, HBase
or both) is used for
searching and data filling

3. Send it to the ElementFactory
4. Get a set of satisfying Elements,

with all values filled (from both
Phoenix and HBase)

5. Add Tags, Relations of Extensions
to Elements

a. DOverlap is_a Relation
b. TStat is_a Extention

6. Update via ElementFactory
a. HBase will be updated

➢ REST and GUI WS are build on top of this API
○ Not all functionality is (yet) interfaced

➢ Similar design to the current Core system

Implementation

➢ Prototype running on the LAL (partial) replica
of the CERN Phoenix storage

○ The same schema
○ Subset of data
○ No authentication, simple configuration

➢ Can easily use any other Phoenix schema
➢ Can be moved to CERN

○ Authentication, configuration ?...
➢ Included in the Core EI GIT repository

Prototype

1. Select period, run,
ami tag, stream,
dataset or event

a. Or any other
Hub (virtual
collection)

2. Get it, together with
all related entities
and information
stored in EI

3. Each entity has a
set of possible
actions to perform
(EI or external)

4. Each entity can be
annotated

5. Detailed search is
possible too

a. Could
expose also
SQL part

select
select

select

GUI Status

➢ Similar as existing “data-centric browser”
➢ Much simpler implementation
➢ Very generic, mostly just reflects structure of

data
○ Presentation using stylesheets

➢ Easily extensible with plugins or external apps
➢ Can work with any Phoenix schema

○ Or even completely without Phoenix, with
all data in pure HBase

➢ All functionality available also via API and REST
➢ Interactive modifications (annotations) not yet

available

Notes

➢ Semantics of SQL + NoSQL is not trivial
○ Search/Filter/Fill, search sequence, Scan/Get,...

➢ It would be more straightforward with just HBase backend
➢ On the other hand, the system works even without HBase

part, with just Phoenix (but of course with less functionality)
○ Or just with any SQL database

