YVYVYYVYYVYY

Phoenix+

Motivation
Architecture
Interface

API
Implementation
Prototype

GUI Status
Notes

sssssssss

Julius Hrivnac, LAL

EIWS, 3-5 June 2019, LAL

Adding flexibility to Phoenix storage. =~

> Migrating to Phoenix, with only SQL interface, we lose the flexibility present in the current
system
This makes implementation rigid & fragile wrt new or changed requirements
Yes, you can always create new SQL table with foreign keys, etc.
But designing complex SQL tablespace is tricky and easily goes haywired
Event more dangerous is adding new SQL features as needs come
Complex SQL queries are very difficult to optimise (remember TagDB)
m Formulating a new SQL query is always risky 40"@
o NoSQL storage, however, is made exactly for the iterative, unprevisible evolution "”ec
> Existing data-centric Web Service e
o Which has quite awkward connection with current EI Core
o But Ul WS part can be easily re-engineered for different backend
> Proposed solution:
o Extend Phoenix storage with pure HBase storage
m Sharing the same keys
o So keeping Phoenix advantages (speed, SQL interface) for RO data
o While opening for new possibilities, adaptability to changing environment
o Phoenix for static data, HBase for dynamic data

0O 0O O O O

Architecture

run:349769

Phoenix

> Both database share the same keys /
> User sees one interface to poth key | [tag | [[extension |
o All data of one key is represented by one Element | foreign keys
> HBase db is much smaller (only subset of data)
> Phoenix db is read-only
> HBase db is modifiable, it can contain
o Simple Tags
- They can be also used in search filter > HBase can also contain Elements without Phoenix partner: Hubs
o Extensions with any object o They represent pre-defined virtual collections of Elements
m E.g. Trigger statistics and overlap, m E.g. Amitag, Stream, Run, Project,...
duplicated events list, ... o They can be extended and searched in the same way as other
o Relations to other elements (like Graph DB) Elements

n E.g. overlaps between datasets > Ad-hoc virtual collections can be build also using Tags

iz i

sssssssss

API - done >
REST Web Service (also serving CLI) - done ElementFactory ef = ...;
. . Dataset dprototypel = new Dataset();
0 Serv|ng text; xml or Json can be added dprototypel.set("runnumber”, 140571).

.set(“project”, “data@9_900GeV”).

> Graphical Web Service - under development
o Adapting existing GraphDB WS

3
Dataset datasetl = (Dataset)ef.search(dprototypel).get(0);
Dataset dataset2 = (Dataset)ef.search(dprototype2).get(0);
dataset2.add(new Overlap(10, 30, 50, 40, datasetl));
dataset2.add(new Tag(“mytag”, “myvalue”));

ef.update(dataset2);

http://localhost:8888/EventIndex/REST.jsp?element=Event&search=eventnumber:57555&tag=golden:mychoice

http://localhost:8888/EventIndex/REST.jsp?element=Event&search=eventnumber:57555

AP1

sssssssss

Create a prototype of the Element

you want to search ElementFactory ef = ...;
Fill in known values Dataset dprototypel = new Dataset();
a. You can use SQL for " "
Phoenix part __——dprototypel.set("runnumber", 140571).
b. You may choose which .set(“project”, “data@9_900GeV”).

backend (Phoenix, HBase

or both) is used for 2

searching and data filling Dataset datasetl = (Dataset)ef.search(dprototypel).get(0);
Send it to the ElementFactory
Get a set of satisfying Elements,
with all values filled (from both

Dataset dataset2 = (Dataset)ef.search(dprototype2).get(9);

Phoenix and HBase) ' /datasetz.add(new DOverlap(10, 30, 50, 40, datasetl));
Add Tags, Relations of Extensions datasetz.add(new Tag(“mytag”, “myvalue”));
to Elements .

a. DOverlap is_a Relation dataset2.add(new TStat(......));

b. TStatis_a Extention ef.update(dataset2);
Update via ElementFactory /

a. HBase will be updated]]
> REST and GUI WS are build on top of this API

o Not all functionality is (yet) interfaced
> Similar design to the current Core system

Vv

Implementation

Prototype running on the LAL (partial) replica
of the CERN Phoenix storage

o The same schema

o Subset of data

o No authentication, simple configuration
Can easily use any other Phoenix schema
Can be moved to CERN

o Authentication, configuration ?...
Included in the Core El GIT repository

ssssssss

Gream physics_CosmicCalo)

?r amitag933_m160.
data18_900GeV.00349769 physics_flosmicCalo merge.AOD.1933_m1960

\l/' ATLAS Event Index

— Problems or Questions ? - Ask service mar

run:349769

A = data09_900GeV.140571.physics BPTX.merge.AOD.f175_m273
B = data09_900GeV.140571.physics RNDM.merge.AOD.f175 m273

ATLAS

A 3253420028
B 2084349450
AvB 4132819449
A”B 1204950029 (29.16%)

Select period, run, A
ami tag, stream, - i
dataset or event
a. Orany other

Hub (virtual

collection)
Get it, together with
all related entities
and information
stored in EI
Each entity has a
set of possible
actions to perform .
(El or external)
Each entity can be
annotated Individual Element Searches
Detailed search is | Dataset | data10 900 149751 physios RN [merge | AOD | 217_m3s7 05, S00GV 4G5 gy
possible 00 T s 7

a. Could
expose also

data09_900GeV.140571.physics_| MmB\as merge AOD 175 _m2
pa 209 900GeV. 140571 phyw: L1CaloEM.merge. AOD.f175_m273

data09 2TeV

select

data09_900GeV

DOverlap | Remove |

141706 141707

e interactions with the graph.
Ster by group type || Cluster by group size || Expand all clusters
¢ live C remove old
filter:

- operation feedback ---
\Rading Run 140571

select

select

1/(: m278 f177_m278 f178_m283 f179_m283 f170_m258

4 £180_m288 f181 m293 f181

m. »IJ-”HI?“) n3
f191_m320 f192_m320

m320 f191_m31
16_m387 £217_m387

7 f216_m382 f2
m427 f23% 39_m427 f231_m422

data09_900GeV.140571.phyflcs_BPTX.m:

e.AOD.{175_m273

nh"ﬂ f193_m325 f215_m377 215, m»R'? 215
m392 218 m392 f212_m377 f234_m422 236

physics L1Calo express_express physics_MinBias physics BPTX physics RNDM physics_L1CaloEM -express_express.merge.AOD.174_m268

physics_MuonswBeam physics_CosmicCalo physics_CosmicMuons physics_CosmicCaloEM

DOverlap

|
DOVerla p da\aO‘BiQUpGeV 140571.physics_L1Calo.merge.AOD.f175_m273

GU1 Status

uuuuuuuu

> Similar as existing “data-centric browser”
> Much simpler implementation
> Very generic, mostly just reflects structure of
data
o Presentation using stylesheets
> Easily extensible with plugins or external apps
> Can work with any Phoenix schema
o Or even completely without Phoenix, with
all data in pure HBase
> All functionality available also via APl and REST
> Interactive modifications (annotations) not yet

available

Vv

Notes

Semantics of SQL + NoSQL is not trivial
o Search/Filter/Fill, search sequence, Scan/Get,...
It would be more straightforward with just HBase backend
On the other hand, the system works even without HBase
part, with just Phoenix (but of course with less functionality)
o Orjust with any SQL database

uuuuuuuu

