
Status of EI Core & UI

Julius Hrivnac, LAL
EI WS, 1 Oct 2018, CERN

➢ Status
➢ MC Dataset Overlaps
➢ New Aux Accessors
➢ Graph DB

○ Database
○ Web Service
○ Migration plans

Status - Import
More than 200 000 000 000 events available !

Status - Access

MC Dataset Overlaps
➢ Implemented on request for run

MC16.1/410470
○ Different handling of RunNumbers

➢ Triggered some improvements to general
interface

➢ New possibility: TXT export from WS

New Aux Accessors

➢ net.hep.atlas.Database.EIHadoop.Accessor.Aux.Filler
○ Fill TagFile with missing columns from another TagFile
○ For example: fill trigger info from AOD to DAOD

➢ net.hep.atlas.Database.EIHadoop.Accessor.Aux.Unique
○ Extract only unique events from a set of TagFiles

$ ei -query … -mr … -aux ...

Graph Databases
➢ Traditional data structures in HEP:

○ tuples (tables)
○ trees
○ nested tuples (trees of tuples)
○ relational (SQL-like)

➢ Schemafull or schemaless
➢ But many of our data are graph-like & schemaless

○ Entities with relations
○ G = (V, E) # graph = (vectors, edges)

➢ Not well covered by relational (SQL) databases
○ We don’t need only a possibility to add new data with pre-defined

relations
○ We need to add new relations

➢ Graph databases exist since a long time
○ Matured only recently thanks to Big Data & AI
○ Very good implementations & (de-facto) standards available

Graph Database for EI

➢ Large parts of EI data are graph-like
○ Catalog:

■ Various relations between dataset
■ Dataset overlaps

○ Events:
■ Versions of the same event in different places

Graph Databases
Standards & Choices

➢ De-facto standard language/api: Gremlin
○ Gremlin is a functional, data-flow language to traverse a property graph. Every

Gremlin traversal is composed of a sequence of (potentially nested) steps. A step
performs an atomic operation on the data stream. Every step is either a map-step
(transforming the objects in the stream), a filter-step (removing objects from the
stream), or a sideEffect-step (computing statistics about the stream).

○ Gremlin supports transactional & non-transactional processing in declarative or
imperative manner.

○ Gremlin can be expressed in all languages supporting function composition &
nesting.

○ Supported languages: Java, Groovy, Scala, Python, Ruby, Go, …
➢ Commonly used framework: TinkerPop
➢ Leading implementation: JanusGraph

○ Supported storage backends: Cassandra, HBase, Google Cloud, Oracle BerkeleyDB
○ Supported graph data analytics: Spark, Giraph, Hadoop
○ Supported searches: Elastic Search, Solr, Lucene

➢ Chosen visualisation: visj.org

Graph Database for EI
Architecture

➢ Using standard Graph DB
○ Importing data from EI

➢ Generic Web Service graphical visualisation
○ Can display any Gremlin-compatible database
○ Visualisation can be customised via Stylesheet (JSON)

■ To give the same L&F as existing EI WS
○ Implemented completely in JavaScript

■ So doesn’t need server-side application
■ Connects to standard Gremlin server to get JSON view

of data
data

Gremlin-capable
Server

JS Client
@ local browser

presentation
stylesheet

Gremlin request
JSON answer

JSON
with

JS & Gremlin

Graph Database for EI
Status

➢ Currently using standard installation (with Oracle BerkeleyDB backend)
○ Will migrate to HBase backend

➢ Snapshot of EI18 Catalog with a subset of overlap tables imported
○ All Catalog & all overlap tables can be easily imported

➢ Most of the graphical part implemented
○ By standalone JS implementation

GraphDB Schema

run
number

dataset
prodStep
dataType

status
nevents

unique_events
...

amitag
version

stream
name

project
name

experiment
name

overlaps
overlapping_events

overlapB
overlapC

ownscontains

has

fills

tags

SMK
number uses

event
number

LumiBlockN
…consists_of

➢ Should decide what is a feature
and what is a relation

➢ Arrows have only logical meaning,
they can be navigated equally from
both sides

➢ Relations and features have
defined multiplicities (not shown
here) and types (int, string, date,...)

➢ Defined entities (and combinations
of them) can be indexed for fast
search

➢ Other features and relations can be
freely added to any entity (vertex or
edge)

Graph Database for EI
Plan - Datasets

➢ Install JanusGraph on Hadoop server (aiatlas016,54)
○ With data stored in HBase
○ [J.G. is already installed and functional on aiatlas016, using BerkeleyDB]

➢ Replicate all Catalog & Overlap data
○ Scripts exist, just to run them

➢ Migrate Catalog WS, CLI, API (the same API, new implementation)
○ Catalog & SimpleCatalog classes

Graph Database for EI
Plan - Events

➢ Structure of HBase backend of JanusGraph is very similar to our EventLookup
HBase table (designed by Rainer)

○ So we can expect similar performance (i.e excellent performance)
○ Much simpler API: standard Gremlin instead of Rainer’ script & quite

complex access code
➢ Design & Create JanusGraph HBase for events

○ Including data, which are currently only in HDFS files
■ Also trigger

○ While GraphDB doesn’t require schema, we should define a reasonable structure
■ And formal schema/constraints (for some entities) can speed up searching

➢ Replicate all data
○ Connected to Catalog (already in JanusGraph)

➢ Migrate WS, CLI, API (the same API, new implementation)
➢ Setup new workflow
➢ Switch to new implementation

○ With existing CLI, WS

Graph Database for EI
Gremlin examples (Groovy style)

add a vertex ‘experiment’ with the name ‘ATLAS’
g.addV('experiment').property('name', 'ATLAS')
add edges ‘owns’ from all vertices ‘project’ to vertex ‘experiment’ ‘ATLAS’
g.V().hasLabel('project').addE('owns').from(g.V().hasLabel('experiment').has('name', 'ATLAS'))
a function deriving a dataset name (which is not stored as such)
from existing dataset relations by traversing the graph
def datasetName(d) {
 return d.sideEffect(values("prodStep").store("4"))
 .sideEffect(values("dataType").store("5")).in()
 .sideEffect(hasLabel("run").values("name").store("2"))
 .sideEffect(hasLabel("amitag").values("version").store("6"))
 .sideEffect(hasLabel("stream").values("name").store("3"))
 .sideEffect(hasLabel("run").in().hasLabel("project").values("name").store("1"))
 .cap("1", "2", "3", "4", "5", "6").next().values().join().toString()
 }
in a similar way, one can navigate from an event to its dataset of certain dataType and amitag

There is also SQL API to Gremlin

Graph Database for EI
Summary

➢ Existing implementation provides
○ Excellent performance
○ Flexible architecture - new requirements are implemented within hours

➢ Most data (Catalog + EL) are stored in HBase tables
○ Using de-facto graph structure (entities with relations)

➢ Will migrate storage to GraphDB on HBase
○ i.e. keep storage & migrate structure into standard implementation

➢ Will keep (and partially re-implement) API and UI (CLI+WS)
➢ Adiabatic change

○ All clients keep working with the same interface
○ Minimal perturbation

➢ Will lose possibility to (directly) use Hadoop M/R
○ Those tasks should be re-developped

➢ Generic browser for all GraphDB data
○ Atlas has many domains with graph-like data
○ Graph databases are often used in AI (machine learning)

Info

Service: https://atlas-event-index.cern.ch/EIHadoop
Home: https://atlas-event-index.cern.ch
FAQ: https://atlas-event-index.cern.ch/doc/faq
GIT: https://gitlab.cern.ch/atlas-event-index/Atlas-Event-Index-Core.git

GraphDB: https://gitlab.cern.ch/atlas-event-index/GraphDB.git
Questions & Comments: mailto:Julius.Hrivnac

https://atlas-event-index.cern.ch/EIHadoop
https://atlas-event-index.cern.ch/EIHadoop/DataOrientedHelp.html
https://atlas-event-index.cern.ch/doc/faq
https://gitlab.cern.ch/atlas-event-index/Atlas-Event-Index-Core.git
https://gitlab.cern.ch/atlas-event-index/GraphDB.git
mailto:Julius.Hrivnac@cern.ch

