
Graph Database

Julius Hrivnac
LAL, Orsay

➢ Motivation, History
➢ What is Graph Database
➢ Graph DB for Atlas Event Index

○ Database
○ Web Service
○ Migration plans

➢ Tˀ˵ I˔ !

Wʞˀʋ ɸʖ Pˀʞɯˀɛˆˆ

Eˮʞʎ˙˔ɸʞʖ ʞf ˔ɵɛ A˔ʎȵˆ Eˮɛʖ˔ Iʖɗɛ˴ Cʞˀɛ Fˀȵʕɛ˯ʞˀʋ

Graph Databases for HEP
➢ Traditional data structures in HEP:

○ tuples (tables)
○ trees
○ nested tuples (trees of tuples)
○ relational (SQL-like)

➢ Schemafull or schemaless
➢ But many of our data are graph-like & schemaless

○ Entities with relations
○ G = (V, E) # graph = (vectors, edges)

➢ Not well covered by relational (SQL) databases
○ We don’t need only a possibility to add new data with pre-defined relations
○ We need to add new relations

➢ Graph databases exist since a long time
○ Matured only recently thanks to Big Data & AI (adaptive NN)
○ Very good implementations & (de-facto) standards available

➢ The difference between SQL and Graph DB is similar as between Fortran and C++/Java
○ On one side, a rigid system, which can be very optimized
○ On the other side, a flexible dynamical system, which allows expressing of complex structures

➢ GraphDB is a synthesis of OODB and SQLDB
○ Expressing web of objects without fragility of OO world
○ Capturing only essential relations, not an object dump

➢ Moving structure from data to code
○ Together with migration from imperative to declarative semantics
○ Things don’t happen, but exist

Graph Databases for Event Index
➢ Original EI in Oracle

○ Too rigid (can’t easily add columns, relations), other problems
➢ Migrated to Hadoop

○ Map files in HDFS
○ Flexible
○ Too slow for searching (ok for processing)
○ Typeless

➢ Partially migrated to HBase
○ Two tables: Catalog + Events
○ Tables contain a lot of ad-hoc relations (references to other entries)

■ We have in fact implemented a poor-man’s GraphDB on top of HBase
➢ Graphical WS presenting data as graphs

Existing Relational WS

Data-oriented Event Index WS https://atlas-event-index.cern.ch/EIHadoop

➢ In production
➢ Simple data interpreted as a Graph by code
➢ To be replaced with GraphDB & generic browser
➢ Aim: Global View of Atlas data with all relations

https://docs.google.com/presentation/d/17tANiuNa1k7DqEYWkjDncd1oF0jZqFQsCDFHQ_1dRYY/edit?usp=sharing
https://atlas-event-index.cern.ch/EIHadoop

Run Number View

datasets overlap table

(command results go here too)

context-sensitive menu

(actions on datasets)

graph drawing options

datasets overlap graph

to create a PNG or TXT view of the table
or a new overlap graph

to create a sub-table

Click !

tables shows
overlap & union,
Hover over cell
to see subtractions

Datasets Graphical
View

AOD dataset

non-AOD dataset

datasets overlap

dataset unique events

Datasets Graphical
View

cluster of datasets
with the same AMI tag

Overlaps between Tags,
Unique Events

overlap within tag
(with color of the tag)

overlap between tags
(grey)

unique events
(black dashed)

Dataset Details
click here

Overlap Details

click here

Subsets

subset
identity

(mutual subset)

Unique Events Details

click here

Clusters

click to expand cluster
(or use menu to expand them all)

Expanded Clusters

- zoom to get names & info
- move symbols around to re-arrange graph

de-select to stop animation

re-create after options change

Uniqueness
show uniqueness triangle

NEW

Filter

show only AODs

Target show all overlaps to AOD & r8107

All Overlaps (different tag levels)
tag levels to be considered as equivalent

All Overlaps of AODs
show all overlaps within a tag show all overlaps between tags

Trigger Overlaps

L1

HLT

Trigger Overlaps (inclusive)
shows all triggers,

but only overlaps to selected ones

Venn Diagrams

Trigger Overlaps for LB Ranges

Existing Relational WS

Data-oriented Event Index WS https://atlas-event-index.cern.ch/EIHadoop

➢ In production
➢ Simple data interpreted as a Graph by code
➢ To be replaced with GraphDB & generic browser
➢ Aim: Global View of Atlas data with all relations

https://docs.google.com/presentation/d/17tANiuNa1k7DqEYWkjDncd1oF0jZqFQsCDFHQ_1dRYY/edit?usp=sharing
https://atlas-event-index.cern.ch/EIHadoop

Graph Databases
Standards & Choices

➢ De-facto standard language/api: Gremlin
○ Gremlin is a functional, data-flow language to traverse a property graph. Every

Gremlin traversal is composed of a sequence of (potentially nested) steps. A step
performs an atomic operation on the data stream. Every step is either a map-step
(transforming the objects in the stream), a filter-step (removing objects from the
stream), or a sideEffect-step (computing statistics about the stream).

○ Gremlin supports transactional & non-transactional processing in declarative or
imperative manner.

○ Gremlin can be expressed in all languages supporting function composition &
nesting.

○ Supported languages: Java, Groovy, Scala, Python, Ruby, Go, …
➢ Commonly used framework: TinkerPop
➢ Leading implementation: JanusGraph

○ Supported storage backends: Cassandra, HBase, Google Cloud, Oracle BerkeleyDB
○ Supported graph data analytics: Spark, Giraph, Hadoop
○ Supported searches: Elastic Search, Solr, Lucene
○ Other candidate: Neo4j, the same Gremlin interface, used by Atlas Geometry DB

➢ Chosen visualisation: visj.org

Functional syntax with additional navigational semantics !

GraphDB Schema for EI
realisation

GraphDB Schema for EI

run
number

dataset
prodStep
dataType

status
nevents

unique_events
…

triggerStat: url
triggerOverlap: url

…
name()

...

amitag
version

stream
name

project
name

experiment
name

overlap
overlapping_events

overlapB
overlapC

ownscontains

has

fills

tags

event
number

LumiBlockN
…

XtrigChainsXXX: Set[String]
guid: Set[String]

...

➢ Should decide what is a feature
and what is a relation

➢ Arrows have only logical meaning,
they can be navigated equally from
both sides

➢ Relations and features have
defined multiplicities (not shown
here) and types (int, string, date,...)

➢ Defined entities (and combinations
of them) can be indexed for fast
search

➢ Other features and relations can be
freely added to any entity (vertex or
edge)

keeps

https://atlas-event-index.cern.ch/GraphDB-doc/Gremlin/schema.gremlin

https://atlas-event-index.cern.ch/GraphDB-doc/Gremlin/schema.gremlin

GraphDB for EI
Architecture

➢ Using standard Graph DB
○ Importing data from EI

➢ Generic Web Service graphical visualisation
○ Can display any Gremlin-compatible database
○ Visualisation can be customised via Stylesheet (JSON)

■ To give the same L&F as existing EI WS
○ Implemented completely in JavaScript

■ So doesn’t need server-side application
■ Connects to standard Gremlin server to get JSON view

of data
data

Gremlin-capable
Server

JS Client
@ local browser

presentation
stylesheet

Gremlin request
JSON answer

JSON
with

JS & Gremlin

GraphDB for EI
Presentation Stylesheet

"dataset": {
 graphics: {
 label:{gremlin:"sideEffect(values('prodStep').store('4')).sideEffect(values('dataType')......values().join().toString()"},
 title:"dataType",
 subtitle:{gremlin:"values('nevents').join().toString().concat(' events')"},
 group:{gremlin:"in().hasLabel('amitag').values('version')"},
 shape:{js:"if(title=='dataset:AOD') {shape = 'hexagon';} else {shape = 'dot';}"},
 value:{gremlin:"values('nevents').join().toString()"}
 },
 actions: [
 {name:"Catalog", url:"https://atlas-event-index.cern.ch/EIHadoop/CatalogView.jsp?query=dataset:"},
 {name:"Sample" , url:"https://atlas-event-index.cern.ch/EIHadoop/InspectView.jsp?view=txt&action=dump&climit=1&limit=10&query=dataset:"},
 {name:"Info" , url:"https://atlas-event-index.cern.ch/EIHadoop/InspectView.jsp?view=txt&action=info&climit=1&limit=10&query=dataset:"}
]
 },

how to present “dataset” vertex

how to show it
(can contain Gremlin or JS code)

external actions

Graph Database for EI
Status

➢ Using HBase backend
➢ Subset of data imported
➢ Most of the graphical part implemented

○ By standalone JS implementation

Graph Database for EI
Gremlin examples (Groovy style)

add a vertex ‘experiment’ with the name ‘ATLAS’
g.addV('experiment').property('ename', 'ATLAS')
add edges ‘owns’ from all vertices ‘project’ to vertex ‘experiment’ ‘ATLAS’
g.V().hasLabel('project').addE('owns').from(g.V().hasLabel('experiment').has('ename', 'ATLAS'))
a function deriving a dataset name (which is not stored as such)
from existing dataset relations by traversing the graph
def datasetName(d) {
 return d.sideEffect(values("prodStep").store("4"))
 .sideEffect(values("dataType").store("5")).in()
 .sideEffect(hasLabel("run").values("rname").store("2"))
 .sideEffect(hasLabel("amitag").values("version").store("6"))
 .sideEffect(hasLabel("stream").values("sname").store("3"))
 .sideEffect(hasLabel("run").in().hasLabel("project").values("pname").store("1"))
 .cap("1", "2", "3", "4", "5", "6").next().values().join().toString()
 }

➢ Functional syntax
➢ Functional & navigational semantics

Graph Database for EI
Event Lookup (Groovy style)

Event-Lookup function (loaded inside the server)
def el(run, event, g) {
 e = g.V().hasLabel('run') # all runs
 .has('rnumber', run) # selected run
 .out('fills') # all datasets filling that run
 .out('keeps') # all events kept in that dataset
 .has('enumber', event) # selected event
 .values('guid') # its guid
 }

CLI command
curl -XPOST -d '{"gremlin":"el(run, event, amitag)"}' http://ei-gremlin-server.cern.ch:8182
or using standard gremlin client
gremlin << EOF
:remote connect tinkerpop.server $janusgraph_home/conf/remote.yaml
el(run, event, amitag)
EOF

➢ Both search and traversal steps
➢ Search steps can be boosted by indexes

.hasLabel(‘run’)

.has(‘rnumber’, run)

.out(‘fills’)

.out(‘keeps’)

.has(‘enumber’, event)

http://ei-gremlin-server.cern.ch:8182

Graph Database for EI
Event Lookup (Performance - 1)

gremlin> el(358031, 775206623, g).profile()
==>Traversal Metrics
Step Count Traversers Time (ms) % Dur
===
JanusGraphStep([],[~label.eq(event), enumber.eq... 1 1 204.805 75.74
 _condition=(~label = event AND enumber = 775206623)
 _isFitted=true
 _query=multiKSQ[1]@2147483647
 _index=event:enumber:u
 _orders=[]
 _isOrdered=true
 optimization 4.614
 optimization 130.444
 backend-query 1 7.742
 _query=event:enumber:u:multiKSQ[1]@2147483647
JanusGraphVertexStep(IN,[keeps],vertex) 1 1 25.560 9.45
 _condition=type[keeps]
 _isFitted=true
 _vertices=1
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a55b7f
 _orders=[]
 _isOrdered=true
 optimization 11.927
 backend-query 1 3.103
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a55b7f

Graph Database for EI
Event Lookup (Performance - 2)

JanusGraphVertexStep(IN,[fills],vertex) 1 1 10.388 3.84
 _condition=type[fills]
 _isFitted=true
 _vertices=1
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a605c1
 _orders=[]
 _isOrdered=true
 optimization 7.661
 backend-query 1 1.442
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a605c1
HasStep([rnumber.eq(358031)]) 1 1 13.129 4.86
SelectOneStep(last,e) 1 1 0.993 0.37
NoOpBarrierStep(2500) 1 1 0.159 0.06
JanusGraphPropertiesStep([guid],value) 2 2 14.800 5.47
 _condition=type[guid]
 _isFitted=true
 _vertices=1
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b11f98a7
 _orders=[]
 _isOrdered=true
 optimization 7.478
NoOpBarrierStep(2500) 2 2 0.568 0.21
 >TOTAL - - 270.406 -

75% of the time is spend by the entry point search, following graph traversal is very fast

Event Index Migration

➢ Export of existing data as Gremlin source
➢ Executing Gremlin source

○ Filling JanusGraph with data in tabular form
➢ Re-arranging JanusGraph data with Gremlin script

○ Creating graph
➢ Slow, but very flexible procedure

○ Useful for evaluation
➢ Next step:

○ Install JanusGraph together with EI Core to enable
■ Performance evaluation
■ Data migration
■ Code migration

Event Index Migration

Hadoop/HBase Hadoop/HBase

EI Core
EI Core (GraphDB)

Apache/Tomcat

JanusGraph,...

Cassandra,...

Client Client

➢ Data (almost) without structure
➢ Complex code (error-prone)

➢ Structured data
➢ Interpreted by JanusGraph

Problems
(not serious)

➢ Physical configuration of non-default set of tools
○ API ok

➢ Coexistence with Hadoop/HBase
○ Many overlapping libs with different versions

➢ Naive JavaScript implementation
○ Should use a framework

➢ JavaScript Gremlin client exists only for Node.js
○ Browser-based client being developed here

■ Not completely generic
➢ No good generic Gremlin GUI

○ Some very good special-purpose GUIs, or commercial ones
○ Our developpement already quite good

■ Generic, customised by powerful stylesheet
➢ Web Service (Gremlin Service) security

○ As always

Added Values
wrt current implementation

➢ Big part of the current Core absorbed in GraphDB structure
○ In past, we had in fact implemented our own GraphDB

■ Common development pattern in HEP :-)
➢ Apache/Tomcat service not needed

○ JavaScript client connects directly do Gremlin server
➢ No special CLI API needed

○ Standard Gremlin functions used
■ Can provide command wrappers for backward compatibility

➢ Using standards
○ So components can be replaced

■ JanusGraph with Neo4J
■ Hadoop with Cassandra

➢ New interface with the same (and enhanced) functionality
○ Also for WS

➢ Same or better performance
○ As the internal DB structure is very similar + better code

Try It !
➢ Growing documentation: https://atlas-event-index.cern.ch/GraphDB-doc
➢ Web GUI (should work inside CERN): http://aiatlas016.cern.ch/GraphDB

A 'playground' has been installed @aiatlas016.
It contains the full Catalog, several datasets and DOverlap tables.
To play with it: connect to aiatlas016 as atlevind
(or checkout https://:@gitlab.cern.ch:8443/atlas-event-index/GraphDB.git).

$ cd work/DB/GraphDB/ant

$ source setup.sh

$ gremlin_local

And try some examples from
https://atlas-event-index.cern.ch/GraphDB-doc/Gremlin/examples.gremlin
https://atlas-event-index.cern.ch/GraphDB-doc/Gremlin/functions.gremlin
https://atlas-event-index.cern.ch/GraphDB-doc/Gremlin/tests.gremlin

https://atlas-event-index.cern.ch/GraphDB-doc/
http://aiatlas016.cern.ch/GraphDB
https://atlas-event-index.cern.ch/GraphDB-doc/Gremlin/examples.gremlin
https://atlas-event-index.cern.ch/GraphDB-doc/Gremlin/functions.gremlin
https://atlas-event-index.cern.ch/GraphDB-doc/Gremlin/tests.gremlin

