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&1 Architecture

> Event Index = space of Event Collections (called TagFiles) + operations on
those collections

> Each operation creates a new TagFile (virtual, referential or full)
> QOperations:
o Selection (searching)
o Transformation
o Merge
o Creation
> QOperations can involve any (Java) code executed for selection or creation
> TagFiles may have different schemas
> TagFiles can be stored in different technologies

o If they support required access methods

> TagFiles can be annotated with additional information (tags,...)
o  This information can be searched on



&1 Architecture

> Key feature: flexibility (important for EWB !)
o TagFiles (and TagSets) can be freely annotated
o No fixed schema:
m Each TagFile can have it's own schema
m Derived TagFile can have different schema from the original one
e Each operation creates a derived TagFile
m TagFiles can be parallel-extended (i.e. with additional attributes)
o The same events present in different TagFiles (either fully or as a reference) can be extended
or annotated in a different way (with different additional information)
o Considered migration to HBase would add even more flexibility (annotation per event)

> Three layers:

o Storage: currently Hadoop MapFiles & HBase tables
o Organisation Framework: TagConvertor (historical name)
o Presentation: Remote CLI + Interactive Web Service



&1 Implementalion

> All architectured features are implemented
> Subset of features is available to users via several (coherent) interfaces

o Remote CLI
o Web Service
o APl

> The level of implementation has been driven by actual user requirements



Tully Tmplementing Original Design

> From the original design (partially

implemented)
o Adding attributes to existing events
m Currently new attributes can be
only added to whole TagFiles

> Four kinds of TagFiles:
o  Full content
o List of events
o Virtual (just in Catalog)
o TagSets = sets of TagFiles
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Fully Tmplementing Original Design
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m'nple We can change implementation, but should not lose this functionality
(which maps very well to WB mission).
This command

1. Takes a set of datasets (defined by regexp + explicit name + attribute)
2. Filters them for some triggers + anything else (any Java code)

3. Transforms using user-supplied Java class

4. Extends with another field

5. Writes output into a new TagFile (which can be used in the same way)
The second command annotates new TagFile.

Catalog keeps trace => we can reconstruct genealogy of TagFiles.

$ ei
-query 'id:EI15.1.datal5_13TeV.*.merge.AOD.f594_*;dataset:datal5_13TeV.00279515.physics_Main.merge.AOD.r7562_p2521
status:good'

-mr 'trigFired("HLT_tau35_mediuml_tracktwo_tau25_mediuml_tracktwo_ L1TAU20IM_2TAU12IM") &&
ltrigFired("HLT_tau35_tightl_tracktwo_tau25_tightl_tracktwo_L1TAU20IM_2TAU12IM") &&
myFilter()"'

-aux 'net.hep.atlas.Database.EIHadoop.Accessor.Aux.MyAuxTransformation;-opt 1'

-extent 'myField=String.valueOf(BunchId*BunchId)’

-outname ‘'MyExampleTagFile'

$ catalog -query id:MyExampleTagFile -modify 'myNewTag:abc createdBy:julius'



Fully Tmplementing Original Design

> Other implemented or prepared features

(@)

o O O O

Creation of derived TagFiles
m Dataset overlaps
m Trigger overlaps (on subset of events)
m Trigger statistics (coupled with statistics on other variables)
m Complex statistics on any variable
m Searching using any code (in fact, full analyses program can be in principle executed)
Event Lookup with searching / reporting on other variables (e.qg.trigger)
Coherent set of client tools (WS, CLI, portable CLI)
Integration with AMI
Move all data into HBase
m Has been evaluated at the beginning, refused for performance reasons
m All performance reasons fixed
m Already using HBase for significant part of the data (Event Lookup)



Summary & Notes

>

V.V

Most requirements on WWB were in the original design of EI Core & many of
them are already satisfied by the production implementation

o Level of their implementation depends on actual User Requirements
We should not lose that functionality by migrating El to Kudu,...
The current system delivers rich functionality. feature flexibility and
excellent performance

However, if we start today, we would keep the architecture:
o A space of TagFiles (= Collections of Events)
o Two-level navigation: Catalog + Event Collections
but change the storage to HBase, Kudu,...
o MapfFiles too rigid
o HBase has been evaluated at the beginning and refused for reasons, which are no more valid
HBase vs Kudu:
o HBase:
m +:schema free (we use it)
m - typeless (everything is string or bytearray)




Plan ?

Catalog Metadata
table
HDFS HBase/Kudu
with many Map files with few tables

How to define TagFiles (Collections) within HBase/Kudu tables ?
(so that an operation would not create new dataset, but update the table)




