WhiteBoard Project
Core System Evolution

WhiteBoard in more general definition

Julius Hrivnac
EI'WS, 12-13 Feb 2018, Valencia

&1 Architecture

> Event Index = space of Event Collections (called TagFiles) + operations on
those collections

> Each operation creates a new TagFile (virtual, referential or full)
> QOperations:
o Selection (searching)
o Transformation
o Merge
o Creation
> QOperations can involve any (Java) code executed for selection or creation
> TagFiles may have different schemas
> TagFiles can be stored in different technologies

o If they support required access methods

> TagFiles can be annotated with additional information (tags,...)
o This information can be searched on

&1 Architecture

> Key feature: flexibility (important for EWB !)
o TagFiles (and TagSets) can be freely annotated
o No fixed schema:
m Each TagFile can have it's own schema
m Derived TagFile can have different schema from the original one
e Each operation creates a derived TagFile
m TagFiles can be parallel-extended (i.e. with additional attributes)
o The same events present in different TagFiles (either fully or as a reference) can be extended
or annotated in a different way (with different additional information)
o Considered migration to HBase would add even more flexibility (annotation per event)

> Three layers:

o Storage: currently Hadoop MapFiles & HBase tables
o Organisation Framework: TagConvertor (historical name)
o Presentation: Remote CLI + Interactive Web Service

&1 Implementalion

> All architectured features are implemented
> Subset of features is available to users via several (coherent) interfaces

o Remote CLI
o Web Service
o APl

> The level of implementation has been driven by actual user requirements

Tully Tmplementing Original Design

> From the original design (partially

implemented)
o Adding attributes to existing events
m Currently new attributes can be
only added to whole TagFiles

> Four kinds of TagFiles:
o Full content
o List of events
o Virtual (just in Catalog)
o TagSets = sets of TagFiles

new data / updates

(new attributes) initial feed generic index creation

Core

/ \ Hored in memory for fast access)

add2 add1 tags idx0 idx1 idx2

Catalog

cache-like indexes,
inverted indexes

Read/Search ";
- (_(index based) .w :

status

/

: Tag DB Clever Boy
richer ; e keeps track on the

existing data and their

e chooses a strategy for
each access request

Fully Tmplementing Original Design

TagFile > Z

dsscrpton éngine - Query Spaces -

IM name: “..."” (TagSet name for master, X
before index extension or index name for others)
ath
:)ype: “tags”|"index’|...
index fom.ﬁ:t: :seq"|“map"|.4.
info: “...
gy
master [slave after: id
master: id (missing for master) e all files are equivalent with respect to Event Index engine
slaves: {id} o all can be queried in the same way (-query argument)
slave indexes: {id} o index references are resolved
Other fields (describing structure) will ® lcludingchalnofreferentss
after be-added \ater - in.coordlnation with o users can bookmark created TagFiles
MsgService & Msg format (msg e if trigger-based indexes created in systematic way, they would be similar to Jack-like reverse
header ?). indexes (could evolve to)
e Query Spaces:
Data in HDBS are stored in collections of TagFiles. Collection of TagFiles makes a TagSet. Each TagSet has o secondary files (cached tag files and indexes) know their ‘creation clause’
one master and set of “before/after” filesets (vertical partitions), slave TagFiles (horizontal partitions) and index o they constitute dependency tree between files «\e(\‘
TagFiles. Catalog should check consistency and presence of all components. o with query measure \le\o‘?
o when new query is requested, it will find the closests larger (by query measure) file angs &
Each TagFile is represented by one entry in HBase table. execute on it o
o this can speed up queries once database contains lot of data and big cache of results

Example TagFiles

new data / updates
(new attributes) initial feed generic index creation

(stored in memory for fast access)

master slave m

Pete Judy Testing FileSets
Pete and Paul contain primary tags,
Judy and Jane contain additional

Catalog

inverted indexes
after after existing data and their

before before information. They are all linked in the
Tag DB Clever Boy
........... e st
® chooses a strategy for
master slave each access request

Catalog. e T =
Executeq by “ant check-full”, which calls e ;
FullTest.java (ndexbased) foster cache-like indexes,
e keeps track on the
Paul Jane

£
g
9

m'nple We can change implementation, but should not lose this functionality
(which maps very well to WB mission).
This command

1. Takes a set of datasets (defined by regexp + explicit name + attribute)
2. Filters them for some triggers + anything else (any Java code)

3. Transforms using user-supplied Java class

4. Extends with another field

5. Writes output into a new TagFile (which can be used in the same way)
The second command annotates new TagFile.

Catalog keeps trace => we can reconstruct genealogy of TagFiles.

$ ei
-query 'id:EI15.1.datal5_13TeV.*.merge.AOD.f594_*;dataset:datal5_13TeV.00279515.physics_Main.merge.AOD.r7562_p2521
status:good'

-mr 'trigFired("HLT_tau35_mediuml_tracktwo_tau25_mediuml_tracktwo_ L1TAU20IM_2TAU12IM") &&
ltrigFired("HLT_tau35_tightl_tracktwo_tau25_tightl_tracktwo_L1TAU20IM_2TAU12IM") &&
myFilter()"'

-aux 'net.hep.atlas.Database.EIHadoop.Accessor.Aux.MyAuxTransformation;-opt 1'

-extent 'myField=String.valueOf(BunchId*BunchId)’

-outname ‘'MyExampleTagFile'

$ catalog -query id:MyExampleTagFile -modify 'myNewTag:abc createdBy:julius'

Fully Tmplementing Original Design

> Other implemented or prepared features

(@)

o O O O

Creation of derived TagFiles
m Dataset overlaps
m Trigger overlaps (on subset of events)
m Trigger statistics (coupled with statistics on other variables)
m Complex statistics on any variable
m Searching using any code (in fact, full analyses program can be in principle executed)
Event Lookup with searching / reporting on other variables (e.qg.trigger)
Coherent set of client tools (WS, CLI, portable CLI)
Integration with AMI
Move all data into HBase
m Has been evaluated at the beginning, refused for performance reasons
m All performance reasons fixed
m Already using HBase for significant part of the data (Event Lookup)

Summary & Notes

>

V.V

Most requirements on WWB were in the original design of EI Core & many of
them are already satisfied by the production implementation

o Level of their implementation depends on actual User Requirements
We should not lose that functionality by migrating El to Kudu,...
The current system delivers rich functionality. feature flexibility and
excellent performance

However, if we start today, we would keep the architecture:
o A space of TagFiles (= Collections of Events)
o Two-level navigation: Catalog + Event Collections
but change the storage to HBase, Kudu,...
o MapfFiles too rigid
o HBase has been evaluated at the beginning and refused for reasons, which are no more valid
HBase vs Kudu:
o HBase:
m +:schema free (we use it)
m - typeless (everything is string or bytearray)

Plan ?

Catalog Metadata
table
HDFS HBase/Kudu
with many Map files with few tables

How to define TagFiles (Collections) within HBase/Kudu tables ?
(so that an operation would not create new dataset, but update the table)

