
  ATLAS developed for many years an event metadata catalogue, the TAGDB, based on Oracle
technologies [1,2].

  LHC Run-2 in 2015-2017 will produce several billion raw events/year and about the same number of
simulated events. A metadata database for this amount of data will need to scale to more than 100 TB

of payload information and have matching processing power.
  Out of the many NoSQL [3] structured storage solutions, Hadoop [4] and its many associated tools

looks like the most promising solution.
  ATLAS tested during 2013 several storage formats based on Hadoop using clusters provided by

CERN-IT and importing a 1-TB dataset from the TAGDB (all Tier-0 processing of 2011):
  TAG events and links tables were imported
from the Oracle database to the Hadoop cluster

in CSV format.
  The sequence of comma-separated columns is

exactly the same as in Oracle.
  Every collection was then imported into the

HBase test table. The table has 2 column families,
each containing one value in text format
that includes comma-separated fields as in the

source CSV files.
  The row key is a simple string with format

"event number - run number - table number".
  This combination is unique for every event; the event number was placed in the first position of

the row key because the event number selectivity is much higher than for the other fields.

[1] J. Cranshaw et al., "Event selection services in ATLAS", prepared for 17th International Conference on Computing in
High Energy and Nuclear Physics (CHEP 09), Prague, Czech Republic, 21-27 Mar 2009. Published in J.Phys.Conf.Ser.
219:042007,2010.

[2] The ATLAS Collaboration (W. Ehrenfeld et al.), "Using TAGs to speed up the ATLAS analysis process", Published in
J.Phys.Conf.Ser.331:032007,2011.

[3] NoSQL databases: see http://nosql-database.org and http://en.wikipedia.org/wiki/NoSQL
[4] Hadoop: see http://hadoop.apache.org, http://hbase.apache.org and http://hive.apache.org

  Event picking

  Give me the reference (pointer) to "this" event in "that" format for a given processing cycle

  Production consistency checks

  Technical checks that processing cycles are complete (event counts match)

  Event service

  Give me the references for this list of events, to be distributed individually to processes running

on (for example) HPC and/or cloud clusters

  Event metadata for the EventIndex are produced by jobs running on Tier-0 and the Grid.
  The data collection system must be extremely robust to assure completeness of the data catalogue.

  A few estimated rates (from May 2013):
  20 Hz of production jobs, each producing up to 50 MB of event metadata

  Average event processing rate (all stages) was 3.5 kHz
  During data-taking periods this rate would double (Tier-0 processing)

  Trigger rates will also increase to 1 kHz
∴  The system must be ready to deal with 80 Hz of file records containing over 30 kHz of event

records to insert into the Hadoop back-end (plus contingency)

  High-level architecture:

  Producers collect metadata from running jobs (within the PanDA pilot or Tier-0 framework)
  Information is transmitted to a server at CERN through a resilient messaging system

  If the job completes correctly, metadata are loaded to the Hadoop server by Consumers

 Modern scientific experiments collect large amounts of data that need cataloguing according to
different points of view to meet multiple use cases and search criteria.

  ATLAS produced 2 billion real events and 4 billion simulated events in 2011 and the same in 2012.
  A database that contains the reference to the file that includes every event at every stage of

processing is necessary to retrieve selected events from data storage systems.
 Using NoSQL technologies we can store information for each event in a single logical record.

  The EventIndex record is created upon recording of the event from the online system:
o  Event number, run number, time stamp, luminosity block number, trigger that selected the

event, and the identifier of the file that contains the event in RAW format
  Each reconstruction campaign produces new versions of every event, in different formats, and

adds information to the EventIndex record including the identifiers of all files containing it

Hadoop 
Storage 
Cluster 

Tier‐0 
processing 

job 

Grid 
processing 

job 

Hadoop 
Interface 
Server 

Interac<ve 
Web Server 

PanDA 
Server 

send 

send 

query 

query 

retrieve 

retrieve send 

Event list 
Run number 
Event number 
Trigger stream 
Data format 

Processing cycle 

Hadoop 
Server 

Event list 
Reference to 
logical file 

Pointer to event 

Get events 
with Data 

Management 
tools 

Process 
events with 
PanDA 

  Jan-Sept 2013: tests of data formats, schemas, performance of upload, search and retrieve data on a
reduced dataset (1 TB)

  Oct-Dec 2013: implementation of the chosen solution on the CERN Hadoop cluster; adaptation or
development of external services; upload of all existing data

  Jan-Jun 2014: commissioning of the new system; performance optimization
  Jul-Dec 2014: commissioning with new cosmic-ray data; discontinuation of Oracle TAGDB

Event count 
request 
Run number 

Trigger 
Data format 

Processing cycle 

Hadoop 
Server 

Event 
sta<s<cs 
Matches 
Duplicates 
Missing 

Display 
results 

! !

!"#$%&%'((

)*+*+,-

."/0%1+02,32#"/4+

5*26,-

7+$1"+82#"

9#3):,;</$##=>

?#0%*@+"
?#0%*@+"

A9

!1B#2,-,
!"#$*8+"

!

!7CDE?F7
G>,5*26+0218/2+,-,CH2/10,
7+$1"+821#0
I>,?#@@*018/2+,F0$=#102
J>,F0K*+*+,F('$/2/,
;L+%%/4104>
M>,CN
O>,(0P#"@,!"#$%&%

?C93ELF7
Q>,CH2/10,0+R,F('$/2/
S>,T/B1$/2+,F('$/2/,R126,
!"#$%&%
U>,(0%+"2,102#,</$##=
V>,(0P#"@,!"#$%&%
GW>,D+K*+*+,F('$/2/

"#"#"

L+%%/4104,

3&%2+@,

$

%

&

'

(!)

*

+ ,

!"#"$%&'(")*+$"+,$-(.-"(")*+$

Joining

R0+R1

25h

31MB/s

/01$/2$

345$6$7.8$

9:;<=$

9>7$?@.A$

/0$

345$6$7.8$

2:><=$

2$?@.$

merging

8h, 51MB/s

Full scan

21m, 1.2GB/s

/0$

A+"--8$

345$6$7.8$

0:B<=$

2B;$?@.A$

compress.

51m, 482MB/s

/0$

C="A.$

A+"--8$

0:D<=$
Importtsv

4h37m, 32MB/s

Full scan

10m30s, 0.9GB/s

 Copying with

distcp

 22h, 88MB/s
/01$/21$@&+7A$

345$

9:E<=$

2F7$?@.A$

/1$@&+7A$

345$$

9:E<=$

2F7$?@.A$

KeyGen

18h, 43MB/s

Reordering

fields

16h

50MB/s

/1$@&+7A$

345$$

9:E<=$

2F7$?@.A$

345$$

9:G<=$

2F7$?@.A$
Joining R+links

2h10m, 361MB/s

10 nodes, 45 map slots

4 cores,12GB RAM

JBOD, 20x2TB HDD

15 nodes, 30 map slots

4 cores,12GB RAM

JBOD, 20x2TB HDD

345$$

A+"--8$

2:D<=$

2F7$?@.A$

compression

2h30m, 312MB/s

Full scan

40m, 645 MB/s

20 nodes, 580 map slots

12 cores, 64GB RAM,

JBOD, 20x2TB HDD

H("I@.$

2:2<=$

345$JKLHM$

2:F<=$

Sqoop

84h

3.5MB/s

decompres

+ merging

20h

20MB/s

345$

9:E<=$

F7$?@.A$

5 nodes, 40 map slots

8 cores,16GB RAM,

SAN, 12x1TB HDD

345$$

A+"--8$

2:D<=$

2F7$?@.A$

Merging trigger words

2h30m, 312MB/s

Full scan

4m, 7GB/s

345$$

A+"--8$

2:D<=$

2F7$?@.A$

Copying with distcp

31m, 1GB/s

Configurations of cluster:

Full scan

37m, 650GB/s

345$$

>:9<=$

2F7$?@.A$

Full scan

6m, 12GB/s

R0 – trigger words

R1 – physics variables

links – source files

LZO – LZOP compression codec

Snappy – Snappy compression codec

  A prototype application was developed to
convert data stored in Hadoop in CSV format into

formats more suitable for querying.
  Several file formats are supported (from

simple text format to full binary map format).
  Data can be also partitioned vertically (per

attribute group) or horizontally (per collection).
  Transformed data can be then further

processed by creating new indexes (including
inverted indexes) for faster access and by
adding new attributes to existing collections.

  The data can be then analysed in several ways:
  using Hadoop maps (with natural indices kept

in memory) to get access to concrete data
  using additional indices to get already pre-

selected data
  using Map/Reduce jobs to search for data

satisfying certain query
  using full scan reads to perform detailed

analyses and selections

!"#$%&'#()#*%&

!"#$%&'#+#,#$-#&

./,01*&!"2&'#+&'34&5#6& 7,088#,*&

Table: Data 2012

&&&&93:);$&<=;0:0#*

!"#$%&

'(#)(#&

*+,&

Main Catalog

9:0#$%*>&

7?,0@&A6%?3$&.AB&
C?=DD61=*#E&

93::#-F3$BG& ')$& !"#$%&

HI&16%#&'34&5#6&

A,3%3%6D#&0;D:#;#$%=F3$&3+&!"#$%&B$J#K&)*0$8&L=J33D&LM=*#&

!"#$%&,#()#*%*&;=6&*D#-0+6&=&-3;D:#%#&

3,&=&D=,F=:&'34&5#62&&

A=,F=:&N#6*&-=$&1#&)*#J&%3&*-=$&')$*&3,&

93::#-F3$*&)*0$8&=JJ0F3$=:&*#:#-F3$&

-,0%#,0=&3$&!"#$%&=/,01)%#*2&

  Preliminary performance benchmarking shows that the most efficient way would be to store data in
Hadoop map files and additional indices, with data in simple compressed text file on disk and indices

kept in memory. An efficient collection catalog should be created to keep track of the existing
collections and indices and their status.

