

Bus

Implementing Parallel Algorithms
Swarm – Multithreaded FrameworkJulius Hrivnac, LAL

The International Conference on Computing in High Energy and Nuclear Physics
New York, 2012

Basic principles:
➢multithreading should not obscure the implementation of algorithms
➢a user should see the program logic, not parallelisation artifacts
➢thread scheduling and balancing should be automatic

Basic principles:
➢multithreading should not obscure the implementation of algorithms
➢a user should see the program logic, not parallelisation artifacts
➢thread scheduling and balancing should be automatic

Architecture:
➢based on the classical Producer-Consumer InfoBus pattern
➢all BusMembers declare their input/output BusItem types, including possible multiplicity
(one BusItem processed by several Consumers)
➢pluggable Balancer orchestrates Producer/Consumer threads to optimize performance

Architecture:
➢based on the classical Producer-Consumer InfoBus pattern
➢all BusMembers declare their input/output BusItem types, including possible multiplicity
(one BusItem processed by several Consumers)
➢pluggable Balancer orchestrates Producer/Consumer threads to optimize performance

Design:
➢based on advanced multithreaded architecture of Java 7
➢allows BusMembers in JVM-compatible multithreaded languages (Groovy, Scala, Clojure)

➢possibility to re-write a part of the framework in those languages foreseen
➢completely interactive with the graphical interface (various Observers)

Design:
➢based on advanced multithreaded architecture of Java 7
➢allows BusMembers in JVM-compatible multithreaded languages (Groovy, Scala, Clojure)

➢possibility to re-write a part of the framework in those languages foreseen
➢completely interactive with the graphical interface (various Observers)

Two levels of parallelism:
➢parallel Consumers/Producers
➢Fork&Join algorithms on parallel containers

Two levels of parallelism:
➢parallel Consumers/Producers
➢Fork&Join algorithms on parallel containers

Future Evolution:
➢persistency (Parallel IO)
➢distributed operation

Future Evolution:
➢persistency (Parallel IO)
➢distributed operation

Uses:
➢Java 7
➢ObjectBrowser
➢Colt
➢JUNG
➢BeanShell
➢FreeHEP
➢Generic Collections
➢Concurrent
➢Log4J
➢Groovy
➢Scala
➢Clojure

Uses:
➢Java 7
➢ObjectBrowser
➢Colt
➢JUNG
➢BeanShell
➢FreeHEP
➢Generic Collections
➢Concurrent
➢Log4J
➢Groovy
➢Scala
➢Clojure

Dynamical Graphical view of
➢Producers/Consumers/Algorithms
➢BusItems
➢calls

Dynamical Graphical view of
➢Producers/Consumers/Algorithms
➢BusItems
➢calls

Object BrowserObject Browser

Processing LogProcessing Log

Command Line
➢full Java available

Command Line
➢full Java available

Memory consumptionMemory consumption

Global OperationsGlobal Operations

Interactor

Monitor

SelfTestBalancer

BusDefaultImpl

BusInterface

AlgSupport

Collaboration

Diversity

support for multiple
languages

support for multiple
languages

support for Fork &
Join Containers

support for Fork &
Join Containers

thread scheduling
and balancing

thread scheduling
and balancing

continuation of Minerva project

	Slide 1

