

Athenaeum
Remote Client to

Atlas Offline Framework

Athena / Gaudi (C++ / Python)

XML-RPC

Athenaeum (Java)

➢Athenaeum allows to
access (remote) Athena
Server.
➢Any (Athena) Python script
can be send directly to Athena
from the Client.
➢Results (usually in XML) are
send back.
➢Special Python scripts are
provided to present some
Athena data.
➢Several Clients exist.

Local Client
(Remote) Server

LCG (CERN)

Athena / Gaudi
Atlas Offline Framework

Python API

XML-RPC Server

FreeHEP (SLAC)

JAS
Java Analysis Studio

A
th

en
ae

u
m

 XML-RPC

XML
Python

Java / xMB
(runs everywhere)

C++ / xGB
(runs only on lxplus)

➢Athenaeum allows to
access (remote) Athena
Server.
➢Any (Athena) Python script
can be send directly to Athena
from the Client.
➢Results (usually in XML) are
send back.
➢Special Python scripts are
provided to present some
Athena data.
➢Several Clients exist.

Plugin

Web Service
(JWSDP / Tomcat)

JSP

Executable

API

Athenaeum
Remote Client to

Atlas Offline Framework

C++ API

Java Analysis Studio

Integrated Help with
Executable Examples

Python/PNuts Script

Java Class

Tree of Objects

Python/PNuts Command Line Graphical/Textual Object Representation

GUI

JAS is a GUI based on FreeHEP library.
FreeHEP is Java equivalent of

CERNLIB, Root, OpenScientist,...

Most Functionality implemented by Plugins.
They can be loaded dynamicaly (over network).

se
e

 h
ttp

:/
/ja

s.
fr

e
e

he
p.

or
g/

ja
s3

 f
or

 d
e

ta
ils

Open Connection to Athena

................
execfile (“InteractiveServer.py”)

$ athena.py -i -s jobOptions.py
.........
XML-RPC server 'atldbdev01.cern.ch:48966' created
method 'process()' registered
Waiting for requests...

Server script written
by Atlantis team

(http://cern.ch/atlantis)
On Server

(Linux with Athena)

On Client
(Any platform with JAS + Athenaeum Plugin)

Atlas Offline Framework (C++ / Python)

Local mode runs without Server,
it can read XML files

which would otherwise be
obtained from the server

Interact with Athena
➢ Execute a Python script on

Athena Server, get results back

➢ Steer Athena Event Loop from
JAS

➢ Access Event data

➢ Access Cool data

➢ Restart Athena server

➢ Get Information about Athena
Server environment (loaded
dictionaries, paths,...)

Registered Proxies are
implementing concrete handling
of connection to specific
(Athena) functionality.

Execute Python on Athena

Script to be executed
on remote Athena

Script Result

Output Console

User can mix Python running within JAS
and Python running in a (remote) Athena.
Athena Python scripts could be moved to JAS.

Steer Athena Event Loop
Next Event,...

Athena interpreted
as a set of

Records (Events)

Output Console

Python script
executed

on each Event
Results analyzed

locally

Remote Proxy

Registered Proxies are implementing concrete handling
of connection to specific (Athena) functionality. They are
implemented by:
- Athena Python script to extract data from Athena
- JAS wrapper to present/handle data inside JAS
- XML schema to describe data
When implementing pre-defined interfaces from Athenaeum,
those Proxies will make themselves automatically
available inside JAS system in an organic way.

Construction of Proxy

XML Schema Representations

XML SchemaJAXB Model XSD Model

XML FragmentJava Objects C++ Objects

Application

XML-RPC

useuse

instantiate instantiate instantiate

generate generate

(un)marshal (un)marshal

Python

create

➢The same data are
shared between different
Frameworks/Applications
implemented in different
languages.
➢All data representations
are derived (generated)
from the XML Schema.

Interact with Cool

➢Open connection to Cool DB

➢ Interpret data (as AIDA NTuples)

➢Show data as HTML

➢Show data as XML

➢Show data in a Tree View

➢Show Python script used to get data

➢Show XSLT stylesheet used to create
HTML

Athena/PyCool
Server

JAS + Athenaeum
Client

Cool DB
Server

LCG Conditions Database
(C++ / Python / SQL)

Cool XML

 <folder name='/IOVDbTest/IOVDbTestMDTEleMapColl'
 id='1331' day='24' month='10' year='2005' hour='5' minute='2' second='36' >
 <attributes>
 <attribute name='FOLDER_IOVTABLENAME' value='TESTCOOL_F1331_IOVS'/>
 <attribute name='FOLDER_TAGTABLENAME' value='TESTCOOL_F1331_TAGS'/>
 <attribute name='FOLDER_IOV2TAGTABLENAME' value='TESTCOOL_F1331_IOV2TAG'/>
 </attributes>
 <channels>
 <channel>0</channel>
 </channels>
 <description>
 <timeStamp>run-event</timeStamp>
 <addrHeader><address_header service_type="71" clid="155887251" /></addrHeader>
 <typeName>IOVDbTestMDTEleMapColl</typeName>
 </description>
 <signature>
 <item name='PoolRef' type=' string'/>
 </signature>
 <payload since='run:0 event:0' until='run:2147483647 event:4294967295'
 object='1' channel='0' day='24' month='10' year='2005' hour='5' minute='3' second='6' >
 <entry name='PoolRef' value='[...]'/>
 </payload>
 </folder>

XML Schema
Python

 XSLT

Java

HTML View

XML View

Objects/NTuples

Work with Cool (1)

➢Data can be represented as
➢XML
➢Objects
➢Tree
➢ (AIDA) NTuples
➢HTML

➢and accessed
➢via GUI
➢using scripting interface

(Java, Python, Pnuts)
➢using API (Java, Python)

Work with Cool (2)

➢Data can be represented as
➢XML
➢Objects
➢Tree
➢ (AIDA) NTuples
➢HTML

➢and accessed
➢via GUI
➢using scripting interface

(Java, Python, Pnuts)
➢using API (Java, Python)

LAr Cool Online

AMI

Cool Tag Collector
➢Using Tag Collector (Web Service) to handle Cool data
➢Work in progress (with Grenoble)

A
th

en
ae

u
m

APIBridge
set of Python scripts

exposing Cool
to tag Collector

Tag Collector

Web Service

Work with Events

➢Using JiveXML Atlantis Server
➢Can read Atlantis Event files

JSP Web Service

➢More easy to use than JAS Plugin, but less functionality available
➢Packaged as a self-consistent WAR-file
➢Can be deployed in any standard Web Container (usually Tomcat)
➢Currently deployed as http://cern.ch/Athenaeum

http://cern.ch/Athenaeum

Distributed Interactive Environment
Architecture Project

clients
(hierarchical)
virtual servers

servers

events

cond.

events

cond.

cond.

tags

tags

tags

catalog

catalog

➢ Only user code + access layer in clients
➢ Data access and standard processing in servers
➢ Orchestration and optimization in virtual servers
➢ Passed data described by common (XML) Schema

➢ Athenaeum
➢ SQLTuple/ColMan
➢ Sequoia

Architecture Advantages
➢Light local client

➢Running on any platform, any release
➢Fully interactive GUI, scripting and API in several

languages
➢Easily extensible by modular plugins

➢Server on a powerful machine, close to data,
replicated and hierarchised when useful

➢Standard communication protocols
➢XML-RPC for the Control Flow and small data
➢Eventually performant protocols (JDBC, xrootd,...)

for big data

Problems
➢PyAthena (Python API to Athena)

➢ Incomplete (only a subset of C++ API is available via Python)
➢Undocumented (C++ Doxygen is not enough for documentation

of its Python API; it is not easy to guess the meaning of weakly-
typed methods; code fragments on Web/Wiky are often out-of-
date)

➢Unstable (too many things change too often)
➢The C++ Framework is still there, it just hidden (its problems will

pop up from time to time)

➢Data
➢No abstract data definition is available, the actual data model

is hidden very deep in the C++ header files forest
➢Athenaeum XSD Schema has been written for data passed

around; XML, Java, Python and C++ incarnations can be created
from them

To Do Next
➢Generalization for other Monolithic Frameworks

➢there is nothing special about Athena/Gaudi, any
Framework with functional XML-RPC server would work fine

➢ Lazy & Compressed data transport (to speed up)

➢XML-aware compression, MPEG-7 compression, binary
XML,... can give size down to about 2x compressed Root
files size of the same data

➢More Proxies (Analysis objects, Generic StoreGate access, ...)

➢Athena (remotely) startable from Athenaeum (so that user does
not have to start the server herself)

➢Deployment of a network of hierarchical Athena Servers

How To Start
➢ Within CERN AFS:

➢ . /afs/cern.ch/sw/java/share/bin/setjdk sun 1.5.0_02

➢ /afs/cern.ch/atlas/offline/external/JAS/jas3/jas3

➢ Elsewhere (any platform):

➢ Get Java 1.5

➢ Get JAS from http://jas.freehep.org/jas3 (Linux, MS, MacOSX,...)

➢ Set Plugin Server (View - Preferences...)

➢ Get Plugin (View – Plugin Manager...)

➢ On WWW:

➢ http://cern.ch/Athenaeum

➢ Running Servers:

➢ http://atldbdev01.cern.ch:12345

➢ http://atldbdev01.cern.ch:54321

➢ Personal Server:

➢ offline/Database/AthenaeumServer

http://cern.ch/Athenaeum
http://atldbdev01.cern.ch:12345/
http://atldbdev01.cern.ch:54321/

Help
➢ http://home.cern.ch/hrivnac/Activities/Packages/Athenaeum

➢ https://uimon.cern.ch/twiki/bin/view/Atlas/HowToUseJAS

➢ http://cern.ch/Athenaeum

➢ JAS integrated Help (with executable examples)

Athenaeum is often updated,
some snapshots in this presentation

may not correspond
to the actual Athenaeum version

http://home.cern.ch/hrivnac/Activities/Packages/Athenaeum
https://uimon.cern.ch/twiki/bin/view/Atlas/HowToUseJAS

