

Mumbai - India 1

Using XML for Detector Geometry Description in the
Virtual Monte Carlo Framework

V.Fine, J.Lauret, M.Potekhin
STAR Collaboration, Brookhaven National Laboratory

J.Hrivnac
Laboratoire de l'Accélérateur Linéaire, Orsay

Mumbai - India 2

Current Status of the Simulation Software in STAR

– A set of tools based on Geant 3.21 still used in production, and nearing
the end of its lifecycle. The geometry of the STAR apparatus is described
in a Fortran-based macro language, and can be made persistent in the
form of ZEBRA files. The code is structures ad 18 source files, each
describing a subsystem.

– A Virtual Monte Carlo platform (VMC), based on the ROOT system, has
been created and integrated with the rest of the STAR off-line software

– This new software is in the final stages of development and testing
– During the transition period, both “old” and “new” simulation engines use

the geometry described in the single source, in a Fortran-based macro
language, with automatic translation to Root-based geometry model for
the purposes of the VMC simulations

– A new tracking software has been commissioned a few months ago and
a large effort is under way to study its performance under a variety of
conditions. It is using a geometry modeler distinct from those used in
Geant and VMC simulations.

Mumbai - India 3

Geometry Modeling and Description

We aim for a single geometry model and/or description (single source) in
simulations, event displays and tracking

Geometry Model

SimulationVisualization

Track reconstruction

Mumbai - India 4

Geometry Modeling and Description

Motivations for migration of the simulation software, geometry model and
geometry description:

– Retiring Geant 3.21 is imminent, and in any case the set of tools
developed within its framework does not provide for the single geometry
model and description, which has been a long standing goal of the STAR
software group. Resolving this will increase the transparency of the
analysis, eliminate work duplication and possible coding errors and
inconsistencies.

– We must improve integration with the new tracking system, and employ
same geometry model for it, too.

– Since STAR is pursuing a vigorous program of detector upgrades, having
efficient detector development, rapid prototyping, simulation and
visualization tools becomes a necessity.

Mumbai - India 5

Geometry Modeling and Description

 Geometry model refers to a memory resident data structures
representing the detector’s configuration, which are used by an
application.

 The ROOT-based geometry (i.e. an assembly of objects based on the
ROOT classes specifically designed for geometry modeling) is a
natural choice for a STAR application because of the heavy use of
ROOT in most software systems created and run by our experiment.

 Geometry description is a human–readable (and often human-
created) document, which serves as source code for the creation of
the geometry model at run-time.

Mumbai - India 6

Geometry Modeling and Description
We have a few choices for the Geometry Description implementation,

such as

• Root C++ code (or “cint” macros)
– pros:

• language already exists and is familiar to users
– cons:

• in a large-scale experiment, there is a large possibility of writing obscure and
inaccessible code

• no code validation tools exist, i.e. one has to compile and load to validate
anything

• code written as in C++ will remain largely non-portable to other systems,
although this is mitigated by exporting the Root geometry to GDML (a
particular XML schema) and using it as an exchange format

• limited choice of Geometry Visualization tools

• A different, and preferably platform-neutral language that can be parsed into
the Root format and also accessed by other applications and platforms.

Mumbai - India 7

Geometry Modeling and Description

We have elected the second approach in pursuing a structured
Geometry Description (as opposed to free-form C++), with XML as the
basis of the language platform, in view of the following advantages:

• XML being the industry standard with large number of both commercial and
user-supported tools, such as highly advanced editors which assist the user
in writing and validating the code

• Hierarchical structure of the XML document naturally maps onto the
application realm of the geometry model

• Flexibility to create a schema that is best suited for the application
• Facilitates interaction with the database (standard approaches and products

exist)
• Validation: standard XML-driven methods of enforcing the rules and verifying

that the code is well-formed , before the application is even run
• Opens a possibility to interface with other applications (e.g. CAD and

visualization), with a suitable XML transform

Mumbai - India 8

Geometry Modeling and Description

Having chosen XML, we had an option of developing a XML schema

from scratch, or using the experience, and hopefully some code, of

other groups. We have studied the merits of the following advanced

schemas and associated tools

• AGDD – Atlas Generic Detector Description
• GDML – Generic Detector Modeling Language (offshoot of Geant 4)
• CMS DDD

Based on factors that included accessibility of the code, possible

level of interest and cooperation by the authors, and most importantly the

feature set, we had chosen the AGDD as the basis for our development

effort.

Mumbai - India 9

Geometry Modeling and Description

The AGDD features:
• Full set of objects to describe solid shapes, suitable for any simulation setup

• Hierarchical organization of the XML geometry code, with objects being
grouped and nested, which maps well onto geometry models in most Monte
Carlo systems

• Support for variables, one- and two-dimensional arrays for numerical data
storage

• Support for arithmetic calculations and certain functions (done at parse-time).
Issue of numerical accuracy can be addressed, if needed.

• Variety of multiple positioning operators that greatly facilitate the creation of
complex geometries

• Forthcoming support of boolean operations
• Bona fide iterator facility (“for” loop), which again allows the developer to create

complex, parameterized structures
• Support for Xinclude, which allows for optimal source code sectioning and

organization, and aids in versioning.

Mumbai - India 10

Geometry Modeling and Description
Accompanying product for the AGDD schema: an advanced graphics viewer
known as GraXML (credit: J.Hrivnac). Allows full visualization of AGDD-compliant
geometry source files in XML format. Color

Adjustment
sliders

Main Viewer
Pane

Image manipulation
tools

Interactive command
window

Volume selection
and navigation pane

Mumbai - India 11

Geometry Modeling and Description

Now that we have chosen a schema, how so we translate a compliant XML

document into the ROOT geometry model? Choices:

• Parse the XML in C++ and create a geometry model inside a Root
application – (SAX, DOM?)

• Adopt and reuse the JAXB parsing technology from the GraXML viewer.
Advantages:

– JAXB parser creates a model of the document which consists of typed objects,
with the XML schema serving as the object declaration tool. This is in contrast
with DOM parsers which simply create hierarchies of containers of string data and
thus need significant amount of additional logic to correctly

– a proven parser with immediate visualization

We have opted to reuse GraXML and to develop the necessary additional

classes that are necessary in order to create the ROOT geometry. In this

approach, we essentially have created a C++ code generator driven by XML

input.

Mumbai - India 12

Geometry Modeling and Description

 The GraXML is a Java application. It parses the XML input and in doing so
creates the so called Generic model, which is a tree of typed objects (not just
containers) representing the input data according to the user-supplied
schema (in the this case, AGDD).

 The tree is then traversed in order to inflate a geometric model that can be
readily visualized. The visualization layer is based on the Java3D graphics
library.

 The traversal process can also be used to construct other types of object,
such as C++ graphics objects. This can be done in-memory, or by
generating the C++ source code as output.

Mumbai - India 13

Geometry Parsing and Code Generation

JAXB parser

XML
geometry
source

Generic Model

Tree

Traversa
lRoot

C++

Visualization

Mumbai - India 14

An Example: a R&D XML code sample
<?xml version="1.0" encoding="UTF-8"?><AGDD DTD_version = "v7" xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include href="StandardMedia.xml"/><xi:include href="StandardMaterials.xml"/>

<section DTD_version = "v7" name="HFT" version="$Id: $" date=“01/15/05" author="M.Potekhin" top_volume="TEST">
<var name="Rin" value="1.45" /> <var name="Rout" value="5.65" />
<var name="TotLength" value="16.0" /> <var name="LadderWidth" value="2.00" />
<var name="LadderThk" value="0.002" />

<array name="r“ values="5.294; 4.862; 4.391;1.595" /> <array name="a" values="0.0; 20.27;42.62;79.51“/>
<array name="aOffset" values="89.28; 88.31; 87.01; 70.15" />

<box name="cave" medium="active" X_Y_Z="10; 10; 50" unit_length="cm" />
<tubs name="pxmo" medium="active" Rio_Z="Rin; Rout; TotLength" unit_length="cm" />
<tubs name="psec" medium="active" Rio_Z="Rin; Rout; TotLength" profile="-11;118" unit_length="cm"/>
<box name="plmo" medium="active" X_Y_Z="LadderWidth; LadderThk; TotLength" unit_length="cm" />

<composition name="PSEC" envelope="psec">
<foreach index="nlad" begin="0" loops="4">

<posRPhiZ R_Phi_Z="r[nlad];a[nlad];0" rot="0;0;-aOffset[nlad]" unit_length="cm">
 <volume name="plmo" />
</posRPhiZ>

</foreach>
</composition>
<composition name="PXMO" envelope="pxmo">

<mposPhi ncopy="6" Phi0="0" dPhi="360/6" R_Z="0;0" impliedRot="true" unit_length="cm">
<volume name="PSEC" />

</mposPhi>
</composition>
<composition name="TEST" envelope="cave">

<posXYZ X_Y_Z=" 0; 0; 0" unit_length="cm"> <volume name="PXMO" /> </posXYZ>
</composition>
</section>
</AGDD>

Multiple positioning
operator (6 copies)

Loop

Variables and arrays

Parameterization

Nesting of Volumes

Mumbai - India 15

Using IDE tools in XML development

Some helpful features of the editor, Altova XMLSpy (same code sample as above)

Attributes of the
current tag

Choice of views of the
XML document

Validation against the
schema at any time

Mumbai - India 16

Am example: a R&D XML code sample

Continued from the previous page: visualization of the XML geometry code for the

proposed new central tracker in STAR, with complex positioning of the silicon sensors

Mumbai - India 17

An Example: generated C++ code sample

Continued:
the ROOT C++ code produced by the parser. A small snippet presented due to screen size limitations.

TGeoCombiTrans* ct_plmo21 = new TGeoCombiTrans();
psec->AddNode(plmo,21,ct_plmo21);
ct_plmo21->RotateX(0.0);
ct_plmo21->RotateY(0.0);
ct_plmo21->RotateZ(-89.28);
ct_plmo21->SetTranslation(0.53,0.0,0.0);

TGeoCombiTrans* ct_plmo22 = new TGeoCombiTrans();
psec->AddNode(plmo,22,ct_plmo22);
ct_plmo22->RotateX(0.0);
ct_plmo22->RotateY(0.0);
ct_plmo22->RotateZ(-68.04);
ct_plmo22->SetTranslation(0.46,0.17,0.0);

TGeoCombiTrans* ct_plmo23 = new TGeoCombiTrans();
psec->AddNode(plmo,23,ct_plmo23);
ct_plmo23->RotateX(0.0);
ct_plmo23->RotateY(0.0);
ct_plmo23->RotateZ(-44.39);
ct_plmo23->SetTranslation(0.32,0.3,0.0);

TGeoCombiTrans* ct_plmo24 = new TGeoCombiTrans();
psec->AddNode(plmo,24,ct_plmo24);
ct_plmo24->RotateX(0.0);
ct_plmo24->RotateY(0.0);
ct_plmo24->RotateZ(9.36);
ct_plmo24->SetTranslation(0.03,0.16,0.0);

Mumbai - India 18

An example: a R&D XML code sample
Question: How do we verify the C++ code generated by our parser is valid?
Answer: We use the STAR-developed ROOT geometry browser (credit: V.Fine)

Below: See the visualization of the generated C++ code for the same assembly of silicon
sensors. (There was only one light source used in this rendering)

Mumbai - India 19

Example: validation of the XML to C++ conversion
The TGeo browser developed in STAR is a valuable geometry development and visualization
tool, which is also useful in validation of the XML to ROOT C++ transformation
Compare: visualization of XML in GraXML (left) vs the generated C++ code in TGeo browser (right)

Mumbai - India 20

Current Status of the STAR VMC

 The STAR VMC employs the ROOT classes for geometry modeling and

 navigation. As such, it can use the following to input the geometry
description:

• a root file
• a piece of C++ code (cint macro)

 Since we don’t have a detailed XML model of the STAR detector yet, an
automatic conversion procedure is used to build a ROOT geometry based
on the ZEBRA data structures saved from GEANT 3.21, thus allowing us to
continue development and testing. This means that the primary source if still
in Fortran and this therefore is a temporary solution.

 Once the work on the XML-based geometry description is complete, we shall
start a migration to the new system.

Mumbai - India 21

Elements of the STAR geometry coded in XML

Mumbai - India 22

Conclusion

Project Status:
• We have chosen a suitable XML schema as the method to describe the

geometry of the STAR detector

• We have developed a Virtual Monte Carlo application which uses ROOT
classes to model geometry

• We have developed a parser-converter, which generates the ROOT C++
geometry code from XML input

Action Items:
• Finalizing the XML schema
• Improving the visualization tools
• Having a group of beta-testers start coding up the detailed geometry of select

STAR systems
• Developing the remaining elements and interfaces of the STAR Virtual Monte

Carlo, which will allow a complete operation with the XML-based geometry,
and subsequently a complete transition of the STAR Collaboration to VMC.

