
Aspects

➢Problem of Crosscutting Concerns
➢Solution with Aspects
➢Aspect Oriented languages and tools
➢Development and Production Aspects for HEP

J.Hrivnac, LAL/Orsay for CHEP'04 in Interlaken

What's Wrong ?
➢ In OOP, Object is the only fundamental abstraction. In real life,

however, other abstractions are needed, e.g.:

➢ Before-after

➢ Cause-effect

➢ State

➢ In OOP, Hierarchies (is_a) and Collections (has_a) are the only
relations. In real life, however, other relations are needed, e.g.:

➢ Master-slave

➢ NxM

➢ Component-container

➢ Interval

➢ Element-metadata

➢ OOP solves this by work-arounds (Patterns, Hooks, Wrappers,...).

➢ Can Aspects be the first step of a more organic solution ?

Implementation Module

Crosscutting Concerns

Drawing

Logging

Persistence

class Track implements Drawable, PersistenceCapable {
 reconstruct() {
 log.info(“Starting reconstruction ...”);
 ...
 }
 draw() {...}
 write(Writer outstream) {...}
 static read(Reader instream) {...}
 static Logger log = ...;
 }

class Hit implements Drawable, PersistenceCapable {
 ...
 }

➢ Besides its own Mission,
classes have to fulfill
other (unrelated) tasks:

➢ Logging/Tracing

➢ Authentication

➢ Persistency

➢ Exception handling

➢ Contract Enforcing

➢ Distribution

➢ Self-testing

➢ ...

➢ Those tasks are spread
over classes from
different domains.

➢ OOP doesn't give tools
to modularize them.

Problem
➢ Crosscutting Concerns have serious impact on source code:

➢ Code Tangling

➢ Code Scattering:

➢ Duplicated Code

➢ Complementary Code

➢ With consequences on software quality:

➢ Poor Traceability

➢ Low Reuse

➢ Hard Evolution

➢ Traditional OOP (abstract interfaces,...) can't modularize Crosscutting Concerns:

➢ Using interfaces, implementation should be defined for each class.

➢ Interface can't define which classes it should act on.

➢ Hooks (Publish/Subscribe, Visitor,...) must be placed before affected class.

➢ Wrappers can be circumvented.

AOP

AO Methodology:

➢ Aspectual Decomposition

➢ Concern Implementation

➢ Aspectual Recomposition

Lets separate Crosscutting
Concerns from the Core Concern,
move them from the Class into
other entities, and re-introduce
them later.

Lets call them Aspects.

We have introduced:
➢new level of Modularization,
➢new kind of Relationship

(besides is_a and has_a).

Concern

Weaving

Aspect
➢ Join Point (identifiable point, formally described by PointCut):

➢ Method – call, execution

➢ Constructor – call, execution

➢ Field Access – read, write

➢ Exception

➢ Initialization – class, object, object pre-initialisation

➢ Advice Execution

➢ Advice (code to be executed at Joint Point):

➢ Before

➢ After – returning, throwing, always

➢ Around

➢ Introduction (modification of code)

➢ Compile-time Declaration

➢ Warning

➢ Error

Analogy with OOP:

➢ Aspect = Class

➢ Pointcut = Method Declaration

➢ Advice = Method Implementation

Aspect can

➢ extend class

➢ implement interface

➢ extend another aspect

➢ contain methods and data

AspectJ Example
public aspect TracingAspect {

 /** Choose all calls to methods in hep package issued from HelloWorld. */

 pointcut callAnyMessage() : within(hep.*.HelloWorld) &&

 call(* hep.*.*(..));

 /** Choose all executions of HelloWorld.say(String) method, pass argument to advice. */
 pointcut executeSayMessage(String s) : execution(public * hep.*.HelloWorld.say(String)) &&
 args(s);

 /** Trace calls before. */
 before() : callAnyMessage() {
 System.out.println("before " + thisJoinPoint);
 }

 /** Trace executes after. */
 after() : executeSayMessage(String s) {
 System.out.println("after saying " + s);
 }

 /** Modify execution. */
 Object around() : callAnyMessage() {
 ...
 Object obj = proceed();
 ...
 return obj;
 }

 }

 ➢AspectJ uses extensions to Java – Aspects have to be compiled
by special tools.

➢Weaving rules are defined inside Aspects.

AspectJ Example (cont.)

/** Modify class hierarchy, declare Track PersistenceCapable. */
declare parents : Track implements PersistenceCapable;

/** Add Vertex to Track. */
private Vertex Track._vertex;

/** Issue error, if user wants to create Track directly instead of by TrackFactory subclass. */
declare Error : call(Track.new(..)) &&
 ! within(TrackFactory+): “Only TrackFactory can create Tracks !”;

AspectWerkz Syntax
package TestAOP;

import org.codehaus.aspectwerkz.joinpoint.JoinPoint;

public class MyAspect {

 public void beforeGreeting(JoinPoint joinPoint) {
 System.out.println("before greeting...");
 }

 public void afterGreeting(JoinPoint joinPoint) {
 System.out.println("after greeting...");
 }

 @Around(“greetMethod”)
 public Object aroundGreeting(JoinPoint joinPoint) {
 Object greeting = joinPoint.proceed();
 return "<yell>" + greeting + "</yell>";
 }

 }

<aspectwerkz>
 <system id="AspectWerkzExample">
 <package name="TestAOP">
 <aspect class="MyAspect">
 <pointcut name="greetMethod" expression="execution(* *.greet(..))"/>
 <advice name="beforeGreeting" type="before" bind-to="greetMethod"/>
 <advice name="afterGreeting" type="after" bind-to="greetMethod"/>
 <advice name="aroundGreeting" type="around" bind-to="greetMethod"/>
 </aspect>
 </package>
 </system>
</aspectwerkz>

Differences to AspectJ:
➢ Aspect is normal Java

class so it can be compiled
by standard compiler and
distributed as standard
jar library.

➢ Weaving Rules can be
external (in XML) so it can
be applied independently,
later.

➢ Weaving Rules can be
expressed using Java 1.5
Annotations.

Asp
ec

t

W
ea

vin
g

Ru
les

Java 1.5 Annotation
(optional)

Syntax and Languages
➢ Constructs:

➢ Pointcut

➢ Advice

➢ Weaving instructions

➢ Language:

➢ Target language

➢ Extension of Target language

➢ XML

➢ (Embedded) Annotations

➢ Special language

➢ Framework/GUI

➢ Composition:

➢ All in the same unit

➢ Different units for different Constructs

➢ Java (195k GoogleMarks):

➢ AspectJ (125k)

➢ AspectWerkz (40k)

➢ Java Aspect Components (20k)

➢ JBoss AOP (10k)

➢ C/C++ (4k):

➢ AspectC (2k)

➢ AspectC++ (2k)

➢ Others:

➢ Python – Pythius, Pythonic (0.5k)

➢ Perl - Aspect

➢ Ruby – AspectR (3k)

➢ C# - AspectC# (2k)

➢ Lisp – itself

Level of support varies

Java generally well supported

Virtual Machine

Weaving

Bytecode

Source

Binary

Source pre-processing

Bytecode enhancing

Loading

Compiling

Dynamically modifying

Introducing Aspects into code.

Bytecode

JIT compiling

 More dynamic weaving
methods are supported

only by some
implementations.

GUI

Incremental compilation is supported.

Applicability
➢ Logging/Tracing

➢ Exception Handling

➢ Monitoring/Profiling

➢ Unit testing

➢ Const/Final

➢ Cache Management

➢ Connection Pool

➢ Contracts Enforcing

➢ Security/Authentication/Authorization

➢ Distribution

➢ Grid

➢ Coding Conventions Checking

➢ Web Service

➢ Graphics

➢ Multiple Inheritance

➢ Mixin

➢ Persistence

➢ Fine-grained Access

➢ Patterns
(Patterns correct problems in OO
languages. In AOP, some Patterns
disappear.):

➢ Factory

➢ Observer (disappears)

➢ Visitor (disappears)

➢ MVC

➢ Entity-Model-Representation

Application Examples
(Development Aspects)

➢ Tracer:

➢ Traces program control flow

➢ ContractManager:

➢ Enforces preconditions, postconditions and invariants

Co
mple

te
 Ex

am
ple

s

group

Tracer
<<aspect>>

Trace
pointcut trace()
before(): trace()
after(): trace()

Class

<<pointcut>>traces

Aspect

Group of Classes
selected by Pointcut

Weaved Class

package net.hep.aspects.AspectJ;

public aspect Trace {

 /** Trace all executions, except itself. */
 pointcut trace() : execution(* *.*(..)) &&
 ! within(net.hep.aspects.AspectJ.*);

 /** Widen depth, adjust prefix, write out where we are. */
 before() : trace() {
 callDepth += 2;
 prefix = BLANKS.substring(0, callDepth);
 Object[] args = thisJoinPoint.getArgs();
 System.out.println(prefix + thisJoinPoint.getSignature());
 for (int i = 0; i < args.length; i++) {
 System.out.println(prefix + "> " + args[i]);
 }
 }

 /** Shorten depth. */
 after() : trace() {
 callDepth -= 2;
 }

 private static int callDepth = -1;

 private static String BLANKS = " ";

 private static String prefix;

 }

If
 yo

u a
lre

ad
y k

no
w A

OP,

yo
u h

av
e s

ee
n t

his
 ex

am
ple

man
y t

im
es

. S
or

ry
.

group

Contract Enforcement

ContractManager
checkPrecondition(Object thisObject, Object[] args)
checkPostcondition(Object thisObject, Object returnValue, Object[] args)
checkInvariants(Object thisObject)

<<aspect>>

Contract
pointcut targetPointcut()
ContractManager getContractmanager()
Object around(): targetPointcut()

ContractException

A
AContractManager

checkPrecondition(Object thisObject, Object[] args)
checkPostcondition(Object thisObject, Object returnValue, Object[] args)
checkInvariants(Object thisObject)

<<aspect>>

AContract
pointcut targetPointcut()
ContractManager getContractManager()

<<pointcut>>

checks

Performs
Contract Enforcement

(just Java)

Connects with
Target Class

(Aspects)

Per Target Class

Contract
/** Contract Manager interface checking preconditions, postconditions and
 * invaiants.
public abstract aspect Contract {

 /** Define the pointcut to apply the contract checking. */
 public abstract pointcut targetPointcut();

 /** Define the ContractManager interface implementor to be used. */
 public abstract ContractManager getContractManager();

 /** Perform the logic necessary to perform contract checking. */
 Object around(): targetPointcut() {
 ContractManager cManager = getContractManager();
 Object obj = null;
 if (cManager != null) {
 System.out.println("... Checking contract using: " + cManager.getClass().getName());
 System.out.println("... Performing initial invariants check");
 cManager.checkInvariants(thisJoinPoint.getTarget());
 System.out.println("... Performing pre-conditions check");
 cManager.checkPreConditions(thisJoinPoint.getTarget(), thisJoinPoint.getArgs());
 obj = proceed();
 System.out.println("... Performing post conditions check");
 cManager.checkPostConditions(thisJoinPoint.getTarget(), obj, thisJoinPoint.getArgs());
 System.out.println("... Performing final invariants check");
 cManager.checkInvariants(thisJoinPoint.getTarget());
 }
 else {
 System.out.println("... No ContractManager found");
 obj = proceed();
 }
 return obj;
 }

 }

AContract

/** AContract extends abstract AContract aspect for use
 * to check A class. */
public aspect AContract extends Contract {

 /** Check A.greet(..) method. */
 public pointcut targetPointcut(): call(String A.greet(..));

 public ContractManager getContractManager() {
 return new AContractManager();
 }

 }

ContractManager

/** Contract Manager interface checking preconditions, postconditions and
 * invariants. */
public interface ContractManager {

 /** Check the preconditions. */
 public void checkPreConditions(Object thisObject,
 Object[] args) throws ContractException;

 /** Check the postconditions. */
 public void checkPostConditions(Object thisObject,
 Object returnValue,
 Object[] args) throws ContractException;

 /** Check the invariants */
 public void checkInvariants(Object thisObject) throws ContractException;

 }

AContractManager
/** AContract Manager implements ContractManager for use
 * to check A class. */
public class AContractManager implements ContractManager {

 /** Check whether argument is not null. */
 public void checkPreConditions(Object thisObject,
 Object[] args) throws ContractException {
 Object arg = args[0];
 if (arg == null) {
 throw new ContractException("\n*** Precondition Violated: " +
 "Argument shouldn't be null !");
 }
 }

 /** Check whether return value is not null. */
 public void checkPostConditions(Object thisObject,
 Object value,
 Object[] args) throws ContractException {
 if (value == null) {
 throw new ContractException("\n*** Postcodition Violated: " +
 "Return value shouldn't be null !");
 }
 }

 /** Check whether n is not negative. */
 public void checkInvariants(Object thisObject) throws ContractException {
 if (thisObject instanceof A &&
 ((A)thisObject).n < 0) {
 throw new ContractException("\n*** Invariant Violated: " +
 "n shouldn't be negative !");
 }
 }

 }

Other Examples
➢ Graphics:

➢ Aspect uses core class and performs all graphical actions for it
(prototyped to connect GraXML display (4.x.x) to external framework)

➢ Fine-Grained Access Control:

➢ Aspects checks that only allowed relations are used

➢ Cache:

➢ Around advice stores all results in a cache

➢ Cached result is returned if it exists

➢ Connection Pool: analogical to Cache

➢ Web Service:

➢ Aspect wraps serving class in a Web Service

➢ Around advice forwards service request through Web Service

Other Examples (cont.)

➢ Persistence:

➢ Aspect introduces read/write functions

➢ Field access advice performs reading/writing when necessary

➢ Aspect makes class (JDO) PersistenceCapable (used in JOnAS Speedo)

➢ (JDO) PersistenceCapable Aspect connects to a core class and handles
its persistence (prototyped for AIDA FreeHEP)

➢ Factory:

➢ Around advice returns unique Object on all Constructor calls

➢ Compile-time declaration checks that objects are not created directly

➢ Singleton:

➢ Around advice on Constructors returns single Objects, if it already
exists; creates it otherwise

Devil's Arguments
➢ Immaturity:

➢ Aspect syntax is not standardized, there are several incompatible approaches.

➢ AOP Theoretical Foundation is not yet very solid.

➢ AOP Methodology is still very primitive. UML syntax for Aspects is not yet standardized

➢ Pointcuts rely on naming conventions, they use just (a bit better) regular expressions and
pattern matching (with weak grammar).

➢ Fundamental problems:

➢ AOP breaks encapsulation. (Yes, but in a controlled way. Otherwise, equivalent functionality
would require more serious break.)

➢ AOP improves locality of Concerns, but destroys locality of Control Flow. Control Flow of
program with Aspects is difficult to understand. Tools are necessary. (But that is true for
Object Oriented Program compared with Procedural Program too.)

➢ Aspects can change program behavior without original author being aware (and what about
copyright ?). (But this is what we want.)

➢ AOP programs can be hard to evolve as they rely on (coding) conventions. Objects depend on
Aspects, but Aspects depend on Objects' structure. (This is not much more serious that pre-
AOP dependencies in OOP.)

HEPAspects

➢ Reusable Aspects (incl. Examples from this talk).

➢ Growing.

➢ Contains Ant tasks for AspectJ management.

➢ Naming convention:

➢ <library>.jar – core/naked library

➢ <library>.Aspects.jar – Aspects library (i.e. Aspects + supporting classes)

➢ <library>.Weaved.jar – weaved library

➢ HEPAspects contains:

➢ HEPAspects.Aspects.jar – Aspects library

➢ HEPAspects.jar- testing library

➢ HEPAspects/bin/weave.sh <mylibrary>.jar applies HEPAspects.Aspects.jar
and creates <mylibrary>.Weaved.jar

http://home.cern.ch/hrivnac/Activities/Packages/HEPAspects

Summary
➢ Object Oriented Programming abstractions are not rich enough to

capture actual Use Cases.

➢ In particular, Crosscutting Concerns can't be expressed.

➢ Various ways have been created to fix that problem (OO Patterns,
etc.).

➢ Those solution are too complex and fragile as they are not naitive to
existing (OO) languages (Abstraction Leak).

➢ Aspect Oriented Programming offers organic way of modularizing
Crosscutting Concerns.

➢ There are several fully functional AOP systems, the most popular
is AspectJ.

➢ Many HEP Crosscutting Concerns can be easily separated with
AOP.

➢ AOP (in Java) is ready for Development and optional Production
Aspects.

➢ Aspects mentioned this week also in talks about Alice and Atlas
frameworks.

AOP (Java) is
➢Solid
➢Easy to use
➢Powerfull (maybe too)
However
➢In rapid evolution
➢With unclear impact
on Architecture

