L

:-\._-' ﬁ; ﬁl.:h:. ﬁd

"I'.'l

What's Wrong ?

» In OOP, Object is the only fundamental abstraction. In real life,
however, other abstractions are needed, e.g.:

> Before-after
» Cause-effect
> State

» In OOP, Hierarchies (is_a) and Collections (has_a) are the only
relations. In real life, however, other relations are needed, e.g.:

» Master-slave

» NxM

» Component-container
» Interval

> Element-metadata

» QOOP solves this by work-arounds (Patterns, Hooks, Wrappers,...).

» Can Aspects be the first step of a more organic solution ?

Crosscutting Concerns

reconstruct() {

j..
draw() {...}

write(Writer outstream) {...}
static read(Reader instream) {...}
static Logger log = ...;

}

class Track implements Drawable, PersistenceCapable {

log.info(“Starting reconstruction ...

>

i..

class Hit implements Drawable, PersistenceCapable {

Persistence

Implementation Module

vV V Vv Y V V

> Besides its own Mission,
") - classes have to fulfill
other (unrelated) tasks:

Logging/ Tracing
Authentication
Persistency
Exception handling
Contract Enforcing
Distribution
Self-testing

» Those tasks are spread
over classes from
different domains.

» OOP doesn't give tools
to modularize them.

Problem

» Crosscutting Concerns have serious impact on source code:

» Code Tangling
» Code Scattering:

> Duplicated Code

> Complementary Code
» With consequences on software quality:
> Poor Traceability
> Low Reuse
> Hard Evolution

» Traditional OOP (abstract interfaces,...) can't modularize Crosscutting Concerns:

» Using interfaces, implementation should be defined for each class.
> Interface can't define which classes it should act on.
» Hooks (Publish/Subscribe, Visitor,...) must be placed before affected class.

» Worappers can be circumvented.

<

Lets separate Crosscutting

Concerns from the Core Concern,
move them from the Class into
other entities, and re-introduce
them later.

Lets call them Aspects.

We have introduced:
> new level of Modularization,
> new kind of Relationship
(besides is_a and has_a).

e

AQO Methodology:

» Aspectual Decomposition
» Concern Implementation

» Aspectual Recomposition

Concern

Weaving

Aspect

» Join Point (identifiable point, formally described by PointCut):

> Method - call, execution
Constructor - call, execution
Field Access - read, write

Exception

vV V V VY

Initialization - class, object, object pre-initialisation
» Advice Execution

> Advice (code to be executed at Joint Point):
> Before
» After - returning, throwing, always

» Around
> Introduction (modification of code)
> Compile-time Declaration

» Warning

> Error

Aspect can

» extend class
> implement interface
» extend another aspect

» contain methods and data

Analogy with OOP:

» Aspect = Class
» Pointcut = Method Declaration

» Advice = Method Implementation

AspectJ Example

public aspect TracingAspect {

/** Choose all calls to methods in hep package issued from HelloWorld. */

’pointcut callAnyMessage() : within(hep.*.HelloWorld) &&
call(* hep.*.*(..));

/ /** Choose all executions of HelloWorld.say(String) method., pass argument to advice. */
f g'.pointcut executeSayMessage(String s) : execution(public * hep.*.HelloWorld.say(String)) &&
\ - _—

args(s); _—

/ | /** Trace calls before. */
(f before() : callAnyMessage() {
\ \ System.out.println("before " + thisJoinPoint);

\ \‘\‘\ }

\ \ /** Trace executes after. */
\ \ after () : executeSayMessage(String s) {
\ System.out.println("after saying " + s);

}

/** Modify execution. */
Object around() : callAnyMessage() {

ébiect obj = proceed();

return obj;

}

» Aspect] uses extensions to Java — Aspects have to be compiled
by special tools.
» Weaving rules are defined inside Aspects.

AspecTJ Examplie (cont.) -

/** Modify class hierarchy, declare Track PersistenceCapable. */
declare parents : Track implements PersistenceCapable;

/** Add Vertex to Track. */
private Vertex Track. vertex;

/** Issue error, if user wants to create Track directly instead of by TrackFactory subclass.

*/

declare Error : call(Track.new(..)) &&
' within(TrackFactory+): “Only TrackFactory can create Tracks !”;

AspectWerkz Syntax

package TestAOP: Differences to Aspectd:
import org.codehaus.aspectwerkz.joinpoint.JoinPoint; OJ(} > Aspec'l' is normal Java
Q . .
public void beforeGreeting(JoinPoint joinPoint) { bY s‘r.andar'd Compller and

System.out.println("before greeting..."); distributed as standard

} jar library.
public void aftngreeting(JoinPoir)t joinPoint) { > Weaving Rules can be

System.out.println("after greeting..."); Java 1.5 Annotation . .

} e (optional) external (in XML) so it can
@Around(“greetMethod”) - be applled mdependenﬂy,
public Object aroundGreeting(JoinPoint joinPoint) { later.

Object greeting = joinPoint.proceed(); .

return "<yell>" + greeting + "</yell>"; > Weavnng Rules can be

} expressed using Java 1.5
} Annotations.

<aspectwerkz>

<system id="AspectWerkzExample">
<package name="TestAOP">
<aspect class="MyAspect">
<pointcut name="greetMethod" expression="execution(* *.greet(..))"/>
<advice name="beforeGreeting" type="before" bind-to="greetMethod"/>
<advice name="afterGreeting" type="after" bind-to="greetMethod"/>
<advice name="aroundGreeting" type="around" bind-to="greetMethod"/>

</aspect> .
</package> d§$>
</system> \QOJ swc,

</aspectwerkz>
<}

Syntax and Languages .

» Constructs: Vf\?/, (G'p » Java (195k GoogleMarks):

> Pointcut O\Qe/)e/o - > AspectJ (125k)

> Advice eho/i\%,’%o » AspectWerkz (40k)

> Weaving instructions @e//h)‘l’o,, > Java Aspect Components (20k)
» Language: 62"‘?(‘>o/;é~‘>s > JBoss AOP (10k)

> Target language S0 > C/C++ (4K):

» Extension of Target language » AspectC (2k)

> XML > AspectC++ (2Kk)

> (Embedded) Annotations » QOthers:

> Special language > Python - Pythius, Pythonic (0.5k)

> Framework/GUTI

Perl - Aspect
» Composition: Ruby - AspectR (3K)

C# - AspectC# (2K)

>
>
» All in the same unit >
>

> Different units for different Constructs Lisp - itself

Weaving

Introducing Aspects into code.

-> Source pre-processing

More dynamic weaving
methods are supported

only by some Compiling
implementations.

-> Bytecode enhancing
Loading

-> Dynamically modifying
|
- JIT compiling

nony

Virtual Machine

lem enrarion Module

Mannersfspect java
¢ B Mannersispect
F callsayMessage
’ executefnyhessage
? @ before
¢ =F advises methods
ﬂ HelloWorld.zay
ﬂ HelloWoarld.main
? @ before
o= =p gdvises method call sites
? @ after
o= =p gdvises methods
? @ after

o= =p gdvises method call sites

2 . |l
File Project Tools
Build: B ~ B B Run: Save Optia...
Clobal Wiewnr |package hierarchy|v| Yo v Hg v Gow |public aspect Mannersispect {
o] index.lst))))))
i pointcut callSayMessage(String s) callfpublic static void HelloWorld. ¥ (Stringl]) &&
? D HelloWorld java q
argsis);
¢ @ Hellowarld
L ﬂmain pointcut executesnyMessage(d) @ within(Hellokorld) &&
o =p method zdvised by execution(* *(..00;
@ MannersAspect: before
@Mannersﬁspect: after be;or‘e[j execgte?nywssiageq { hisloinPoi .
#ﬂsa\; }ystem.out.prmt nii"before + thisloinPoint);
? D hMannersAspect java
¢ B9 Mannersfspect hefore(String =) callSayMessage(s) |
L @after Systen.out.printin("hefore " + thisloinPoint + " " + s57;
9 = agdvises metheds H
ﬂ HelloWorld. zay
ﬂHeIIDWDrId.main af;er‘(j EXECUFEA?YMES;E@EO"{ hisloinPoi .
o—@after }ystem.out.prmt ni"aftter + thisloinPoint);
o= @ before
o &3 before after(sString =) : callSayMessage(s) {
’ callsayMesszage Systen.out.printin("atter " 4+ thisloinPoint + " " + s57;
F executepnyMessage 1
H
File Wiews (index.Ist) i F e <[>

‘]

i [»

lSDurce not available for node: <build to view structure>

Incremental compilation is supported.

v Vv Vv Vv VvV V¥V ¥V V V V VYV VY

Applicability

Logging/ Tracing
Exception Handling
Monitoring/Profiling
Unit testing
Const/Final

Cache Management
Connection Pool
Contracts Enforcing
Security/Authentication/Authorization
Distribution

Grid

Coding Conventions Checking

vV VvV Vv Y V VYV VY

Web Service
Graphics

Multiple Inheritance
Mixin

Persistence
Fine-grained Access

Patterns

(Patterns correct problems in OO
languages. In AOP, some Patterns
disappear.):

> Factory

» QObserver (disappears)

> Visitor (disappears)

> MVC

> Entity-Model-Representation

> Tracer: X

> Traces program control flow e

» ContractManager:

> Enforces preconditions, postconditions and invariants

Tracer

-4/ o

<<pointcut>>

—— Weaved Class

~

Group of Classes
selected by Pointcut

\\0

package net.hep.aspects.Aspect);
public aspect Trace {
/** Trace all executions, except itself. */

pointcut trace() execution(* *.*(..)) &&
! within(net.hep.aspects.Aspect]).*);

/** Widen depth., adjust prefix., write out where we are. */
before() trace() {

callDepth += 2;

prefix = BLANKS.substring(®, callDepth);

Object[] args = thisJoinPoint.getArgs();
System.out.println(prefix + thisJoinPoint.getSignature());
for (int i = 0; i < args.length; i++) {
System.out.println(prefix + "> " + args[i]);
}
}

/** Shorten depth.
after () trace() {
callDepth -= 2;

}

*/

private static int callDepth

1
1
[

private static String BLANKS
private static String prefix;

}

Contract Enforcement -

Performs
Contract Enforcement
(just Java)

Connects with
Target Class
(Aspects)

Per Target Class

checks

i<<pointcut>>

group

Contract

/** Contract Manager interface checking preconditions,

postconditions and

* dnvaiants.
public abstract aspect Contract {

/** Define the pointcut to apply the contract checking. */

public abstract pointcut targetPointcut();

/** Define the ContractManager interface implementor to be used.

*/

public abstract ContractManager getContractManager () ;

/** Perform the logic necessary to perform contract checking. */

AObJect around(): targetPointcut() {

ContractManager cManager getContractManager () ;

Object obj null;

if (cManager != null) {
System.out.println("
System.out.println("
cManager.checkInvariants(thisJoinPoint.getTarget());
System.out.println(" Performing pre-conditions check");
cManager.checkPreConditions(thisJoinPoint.getTarget(),
obj proceed() ;
System.out.println(" Performing post conditions check");
cManager.checkPostConditions(thisJoinPoint.getTarget(), obj,
System.out.println(" Performing final invariants check");
cManager.checkInvariants(thisJoinPoint.getTarget());

Checking contract using:

}
else {
System.out.println("... No ContractManager found");
obj = proceed();
}
return obj;

}

" + cManager.getClass().getName());
Performing initial invariants check");

thisJoinPoint.getArgs());

thisJoinPoint.getArgs());

AContract

/** AContract extends abstract AContract aspect for use
* to check A class. */
public aspect AContract extends Contract ({

/** Check A.greet(..) method. */
public pointcut targetPointcut(): call(String A.greet(..));

public ContractManager getContractManager () {
return new AContractManager();

}

ContractManager

/** Contract Manager interface checking preconditions, postconditions and

* invariants. */

public interface ContractManager {

/** Check the preconditions. */
public void checkPreConditions(Object thisObject,
Object[] args) throws ContractException;

/** Check the postconditions. */
public void checkPostConditions(Object thisObject,
Object returnValue,
Object[] args) throws ContractException;

/** Check the invariants */
public void checkInvariants(Object thisObject) throws ContractException;

}

AContractManager

/** AContract Manager implements ContractManager for use

* to check A class. */

public class AContractManager implements ContractManager ({

/** Check whether argument is not null. */
public void checkPreConditions(Object thisObject,
Object[] args) throws ContractException {

Object arg = args[0O];
if (arg == null) {
throw new ContractException("\n*** Precondition Violated: " +
"Argument shouldn't be null !");
}
}

/** Check whether return value is not null. */
public void checkPostConditions(Object thisObject,
Object value,
Object[] args) throws ContractException {

if (value == null) {
throw new ContractException("\n*** Postcodition Violated: " +
"Return value shouldn't be null !");
}
}

/** Check whether n is not negative. */
public void checkInvariants(Object thisObject) throws ContractException {
if (thisObject instanceof A &&
((A)thisObject).n < 0) {
throw new ContractException("\n*** Invariant Violated: " +
"n shouldn't be negative !");

}
}

Other Examples

» Graphics:

» Aspect uses core class and performs all graphical actions for it
(prototyped to connect GraXML display (4.x.x) to external framework)

> Fine-Grained Access Control:

» Aspects checks that only allowed relations are used
> Cache:

» Around advice stores all results in a cache

» Cached result is returned if it exists

» Connection Pool: analogical to Cache

> Web Service:

» Aspect wraps serving class in a Web Service

» Around advice forwards service request through Web Service

Other Examples (cont.)

> Persistence:

» Aspect introduces read/write functions
> Field access advice performs reading/writing when necessary
» Aspect makes class (JDO) PersistenceCapable (used in JOnAS Speedo)

» (JDO) PersistenceCapable Aspect connects to a core class and handles
its persistence (prototyped for AIDA FreeHEP)

> Factory:

» Around advice returns unique Object on all Constructor calls

» Compile-time declaration checks that objects are not created directly

» Singleton:

» Around advice on Constructors returns single Objects, if it already
exists; creates it otherwise

Devil's Arguments

» Immaturity:

> Aspect syntax is not standardized, there are several incompatible approaches.
» AOP Theoretical Foundation is not yet very solid.
» AOP Methodology is still very primitive. UML syntax for Aspects is not yet standardized

» Pointcuts rely on naming conventions, they use just (a bit better) regular expressions and
pattern matching (with weak grammar).

> Fundamental problems:

» AOP breaks encapsulation. (Yes, but in a controlled way. Otherwise, equivalent functionality
would require more serious break.)

» AOP improves locality of Concerns, but destroys locality of Control Flow. Control Flow of
program with Aspects is difficult to understand. Tools are necessary. (But that is true for
Object Oriented Program compared with Procedural Program too.)

» Aspects can change program behavior without original author being aware (and what about
copyright ?). (But this is what we want.)

» AOP programs can be hard to evolve as they rely on (coding) conventions. Objects depend on
Aspects, but Aspects depend on Objects’ structure. (This is not much more serious that pre-
AOP dependencies in OOP.)

vV YV Y VY

HEPAspects

http://home.cern.ch/hrivnac/Activities/Packages/HEPAspects

Reusable Aspects (incl. Examples from this talk).
Growing.
Contains Ant tasks for AspectJ management.
Naming convention:
» <library>.jar - core/naked library
> <«library>.Aspects.jar - Aspects library (i.e. Aspects + supporting classes)
> <library>.Weaved.jar - weaved library
HEPAspects contains:
» HEPAspects.Aspects.jar - Aspects library
» HEPAspects.jar- testing library

HEPAspects/bin/weave.sh <mylibrary>. jar applies HEPAspects.Aspects.jar
and creates <mylibrary>.Weaved. jar

summary

Object Oriented Programming abstractions are not rich enough to
capture actual Use Cases.

» In particular, Crosscutting Concerns can't be expressed.

Various ways have been created to fix that problem (OO Patterns,
etc.).

> Those solution are too complex and fragile as they are not naitive to /AOP (Java) is
existing (OO) languages (Abstraction Leak). > Solid

>Easy to use

»Powerfull (maybe too)

However

»In rapid evolution

»With unclear impact

\on Architecture y

Aspect Oriented Programming offers organic way of modularizing
Crosscutting Concerns.

There are several fully functional AOP systems, the most popular
is AspectlJ.

Many HEP Crosscutting Concerns can be easily separated with
AOP.

AOP (in Java) is ready for Development and optional Production <=
Aspects.

Aspects mentioned this week also in talks about Alice and Atlas
frameworks.

