Event Collections as AIDA ITuples
>Requirements on Event Collections API S QLTU p l e + C 0 l M an

> Architecture:

>Requirements on Event Collections
>Technology Choices

>SQLTuple Architecture

>FreeHEP AIDA Storage

>Proposed SuperAIDA

SQL storage

for FreeHEP implementation
of ITuple AIDA interface L ——
compatible with Pool Event Collec‘rlons Me’rada’ra

> Applications:

>(ColMan — Collection Management

>Web Service

>Metadata Management

>Pool Compatibility
>Python and C++ Interface http://hrivnac. home. cern. ch/ hrivnac/ Activities/Packages/ SQLTupl e
. http://hrivnac. hone. cern. ch/ hrivnac/ Activities/Packages/ Col Man
>Metadata Analysis http://java. freehep. org
http://aida.freehep.org
>Performance http://1 cgapp. cern.ch/ project/ persi st/ netadata

>\What's new

>Summary J.Hrivnac (LAL) for Atlas SW WS, May'04 in BNL



\

Y V. Y VvV Y

Requirements on Event Collections
(Event MetaData, Tag DB, Attributelist)

Collections Management functionality should be provided (teplications, filtering, merging,
splitting,...).

Collections Navigation functionality should be provided (seatching, looping,...).
Analysis functionality should be available (histogramming, combining, cutting,...).

All functionality should be available in multi-language environment (Java, C/C++,
Python,...).

All functionality should be available in a platform-independent environment.

API should be reusable with other storage technologies (SQL databases, XML files, Root
files,...).

SQL syntax should be hidden, user should use her native environment (Java, C/C++,
Python,...).

SQL functionality should be used (performance, advanced functions when available,...).
Any SQL database should be supported MySQL, PostgreSQL, Oracle, embedded DBs,...).
Distributed (Grid) environment should be possible (WebSetvice,...).

Compatibility with Pool Event Metadata should be possible.

Performance overhead over native SQL should be negligible.



Technology Choices

> AIDA for APIL:
> Event Metadata are AIDA ITuples.
> FreeHEP for AIDA implementation:

> It is the most complete and functional AIDA implementation.

> It supports most storage technologies.

> It can be used from Java, C++, Python and PNuts.
> JDBC for access to SQL databases:
> It satifies all requirements.

> It is the most widely accepted API.

> It is supported for all common RDBS.

> WebService for distributed and multilanguage interface:
> It is the only real standard.

> Java for native implementation
> It has all needed properties and functionality.

> It can be easily used from other languages.

> It runs everywhere (no porting problems).
> JACE for interface to C++:

> It makes using Java from C++ easier that another C++ from C++.



SQLTuple Architecture

SQILTuple extends existing FreeHEP implementation of AIDA by implementing
SQL IStorage.

It uses the same API as other AIDA FreeHEP storage technologies, like XML or
Root files.

|
AIDA

All dependencies on SQL and database-specific features are stored in textual N
configuration files: :

It 1s very simple (there are just two classes with non-trivial mission).

implements

i
SQLTuple

> Implementations.properties tor database-dependent properties,

> Types.properties for SQL-Java types mapping,

> StmtSre.properties for SQL-ITuple methods mapping. uses
SQLTuple provides several extensions to existing AIDA interfaces (proposed as [
AIDA standard): FreeHEP

> Extensions to ITuple interface:

> Richer access methods.

> SQL-aware methods (searching, indexing,...).
> Extensions to IStore interface:

> [Store API is not yet standardized.

> Current IStore fits with file-based technologies (XML, RootlO,...), but not with real databases.

> Only AIDA XML format is actualy standardized.



FreeHEP AIDA Storage

> AIDA ITuples can be currently stored in many technologies
using FreeHEP AIDA implementation:

> AIDA (compressed) XML files,
> Root files:

> Root TTuples (reading integrated in FreeHEP, writing via
standalone prototype),

> Pool Root AttributeLists (reading integrated in ColMan, writing
not available as Pool Root files format hasn't been decrypted yet).

> HBook files (only reading),

> SQL databases (MySQL, PostgreSQL and McKoit directly
supported; Cloudscape and Hypersonic tested):

> Just tables,
> Pool AttributeLists (with LinkTables).

> All AIDA standard operations are supported.

> ITuples (=Collections) in I'Tree can be mounted, linked,
copied, moved,... as in the (distributed) filesystem. They can
be manipulated directly from the code (in many languages),
using GUI or from the command line.

> All database operations profit from the native technology
(e.g. copying of SQL ITuples is performed within SQL
database where possible).

HEook

Management of SOL DBs currenthy ADA
as a FreeHEP extension.

0L

WWriting of Root files currenthy
as a standalone application.

]

RootFile

MyE0L FostgresL l

-_1___ m

I CRoi

\
Embedded. [

&3 DBl aida

_J

Cornversion hetween 0L
databases happen

— - Jwithin SQLTuple.

Conversions inside S0L
database happen within

this database.

@ ¢ OldCallection

AT
ikt event
ik attint

pt_miss
it pt_rmul

filter

taken_string

5 pB2 aida

@ ] NewCollection

ik run
XML///' B e

[[hj pt_miss

[[hl pt_mul

[[hl token_string



Proposed SuperAIDA

> More complex AIDA operations on top of existing
AIDA API to satisfy AttributeSet Use Cases:

> no impact on current AIDA,
> usable with any AIDA implementation.

> AttributeSet requirements:

> JTuple specification by ITupleSpec object, itself
serialisable into XML.

> ITuple row accessible as ITupleEntry object (to fill or
retrieve).

> Other requirements:
> Support for vector and matrix columns.

> QOther ideas:

> Formal specification of AOD2AttributeSet relation ?

—
SuperAIDA

L‘lSCSi

—
AIDA

<AttributeSet nanme="..."
version="..."
author="...">
<Descri pti on>

</ Descri pti on>
<Scal arAttri bute nane="..."
type="..."
default="..."
coment="..."/>
<VectorAttri bute nane="...”
type="..."
| ength="..."
default="..."
comment="..."/>
<Matri xAttri bute nanme="..."
type="..."
| engthl="..."
| engt h2="..."
default="..."
coment="..."/>
</ Attri but eSet >




ColMan - Collection Management

> Filter creates new (sub)Collection/(sub)Replica from existing one applying a filter
to attributes (works between different storage technologies):

‘j ava -jar Col ManFilter.exe.jar <inUl> <outUl> <filter> <inUser> <i nPassed> <out User > <out Passwd>\

> Merger physically merges two Collections into new one:

\java -jar Col ManMerger.exe.jar <inUl1> <inUl2> <outUrl> ...

> Plotter plots selected attributes from Collection:

‘j ava -jar Col ManPl ot t er . exe.jar <url> <x> <y> <wei ght> <filter> <user> <passwd>‘

> Convertor converts proprietary Pool-Root files into standard AIDA formats:

‘j ava -jar Col ManPool Root 2Al DA. exe. jar <i nFi | e>. r oot [ <out Url >]‘

> EventSelector returns a set of Tokens of Events from Pool Collection using a

filter on attributes:

Eventlterator iterator = collection.iterator();

String token;
while (iterator.next()) {
token = iterator.token();
/'l use token (find its Event,...) ...

}

col l ection.close();

Event Col | ecti on collection = new EventCol |l ection(url, filter_string,

user, passwd);

> All executable jar-files installed in InstallArea/share/lib.
> Just several examples, others can be easily added.

> Work across all supported storage technologies.

> Java and C++ direct API exist too.

> WebService interfaces exist.

ColMan

usces

ITuple




Web Service

> WebService allows to access all the functionality from a very thin (remote) Client.
> ColMan utilities are exported using JWSDP WebService server.

> Other AIDA functionality can be easily added.

> Clients can be created from WSDL WebService descriptor in almost any language
(even in C++).

> SQLTuple WebService can collaborate with other WebServices (like AMI),
forming Distributed Heterogeneous Collections Database.

[** Web Client to SQLTupl e Event Sel ect or WbServi ce.
* All other code is created automatically from WSDL. */

[/l CGet renote Event Sel ect or
Event Sel ect or W5 sel ect or = new Event Sel ect or _| npl (). get Event Sel ect or WsPort () ;
sel ector. set Property( ENDPO NT_ADDRESS PROPERTY, "http://WbServer.there. net: 8080/ SQLTupl e/ Event Sel ect or”) ;

/'l Select set of Tokens
Cbj ect[] tokens = sel ector.select("jdbc:mysqgl://SQ.Server. here. net/ Tupl es/ Test Col | ecti on",

"pt < 6",
"user",
"passwd");
/'l Loop over Tokens
for (Object token : tokens) {
/[l use token (find its Event,...)
}
] C [

ColManWSClient| =" »{ColManWS| " »| ColMan
Java, C/C++, Python, Petl,...




Metadata Management

1) Creation of Event files and Event Metadata files using Pool.

> Production:

2) Copying of Event files into their master storage.
3) Merging of Event Metadata files into SQL Event Metadata database using ColMan, indexing.
4)  Registering of Event files in AMI and File Catalog.
5) Registering of SQL Event Metadata in AMIL
6) Replicating, ...
> Processing/Analysis:

1) Selection of Collections from the Collections Metadata database using AMI (“Give me all Higgs Collections.”)

2) Selection of Event Tokens from the Event Metadata database using ColMan, possibly extraction into local database/file (“Give me all
Tokens for Events with pt > 6.”).

3) Location of Events using Token interpreter and File/Replica Catalog, possibly extraction into local file (“Where are my Events 7).
4) Extraction of Events from files using Pool, creating local copies (“Give me my Events.”).
5) Monitoring of usage patterns, re-indexing, replicating,...

> All data should be available in a distributed, language-neutral way using WebServices:

> Collections Metadata (AMI).

> Event Metadata (ColManW5).

> Token interpreter (Pool doesn't provide its standalone incarnation yet).
> File/Replica Catalog.

> Event Server (delivering requested Events) or even Athena Service (performing submitted Algorithms wrapped as Agents) ?



Existing in SQLTuple+Colman
to provide compatibility with Pool

Missing in Pool
to provide compatibility with AIDA

Pool Compatibility

SQLTuple+ColMan is interoperable with Pool SQL Attributel.ist.

The default SQLTuple behavior is to map SQL table directly to AIDA ITuple.

All SQL features (types, associated commands,...) are defined in a properties files, user can provide customized
files which allow different mapping of SQL to I'Tuple (i.e. different Schema).

> Pool AttributeSets are stored in two tables: attributes themselves in one, Tokens in another (LinkTable):

> Customized SttSre.properties file is used to access Pool AttributeSets.

> Pool SQL storage (existing as well as planed) is not enough functional to provide portability across
applications and databases:

> Mapping between SQL and native types can't be independently specified and can't be deduced from the database
content. Conservating reading is not possible without additional information.

> Schema are not available without reading actual database.
> Different database implementations don't use the same SQL dialect.

> OIDs (Tokens) can't be interpreted outside Pool.

> Pool Collections should be customizable by external files:

> SQL types and commands (to be) used to access data.

> AttributeSet Specification (.e. mapping to SQL types, default values, comments,...).
> Standalone Service for creation/interpretation of Tokens should be available.
> Standard formats of Pool Metadata should be supported:

> AIDA XML,

> Root TTuples (not standard, undocumented, but widely used and already decrypted).



Python and C++ Interface

> SQLTuple is written in Java (and SQL) to profit from mature infrastructure (JVM, JDBC, FreeHEP.,...),
largely un-available in other languages (C++).

> SQLTuple+ColMan can be used directly from Python.

> Many interfaces to C++ are available:

> FreeHEP AIDA implementation itself implements C++ AIDA interface via AIDA-JNI package (used, e.g., by
Geant4; soon to be interfaced to PI). It can be used to access SQLTuple AIDA functionality.

> Direct C++ proxies to ColMan utilities are created using JACE package (package ColManC).

> ColMan JWSDP WebService (package ColManWS) can be transparently used by any WSDL C++ Web Client
(AxisC, gSOAP,...).

> Other languages (PNuts, Groovy, Ruby,... ) can be trasparently used too as they provide direct access to
Java.

> Sizes (without externals):

> SQLTuple library: 60 kB
> ColMan library: 30 kB, ColMan executables: 400 B each
> ColManC library (just proxies to ColMan !): 2.5 MB, ColManC executables: 200 kB each

[ ]
AIDA-JNI| ™% AIDA —
N\ —
C++ ColManC | ™ » ColMan
! C++

SQLTuple




Metadata Analysis
Y . > Access to ITuple (SQL, Rootfile, XML files,...).
~ (With JAS + SQLTuple) > Local o remore.

> Can analyze using any JAS facility:

Bl > Graphically,
File Edit VYiew Tuple Run Window Help .
- > By Java, Python or PNuts class/script,
LEls [Blelefs] (oo ,
Programs > From Python or PNuts command line.
[# Tuple .
e i [#) Tuplejava
o [ TestCollection 1 import hep.aida.™;
o [ TestCallection_LinkTable : ‘..
o [ asa 3 public class Tuple {
4 public static void main{stringl] argy) throws Exception {
T E,J bechhmarch;LOOl%%OO_lOO 5 5tring db = "jdbcmysgl fflocalhostfTuples®;
? collection_aida. E £ String options = "hep.aida.ref sgl.db="+ db +""
attboolean : 5 + "hep.aida.ref.sgl.user=tast"
libi attoyte : E + "hep.aida.ref. sgl. passwd =test”;
liht attchar : 9 lanakysisFactory af = lanabsisFactony created;
llﬂ attshort H 10 ITreetree = af.createTreeFactory). create(db, "sgl", true, false, options);
k] attint I FEI ﬁﬁ
E :::'ff;; ji } File Edit ¥iew Tuple Run LCD LCIO Window Help
il artclouble : [=]E]a collection_aida_100 |+ |« | b 1 1]
token_string i = = -
libt fioatdiviouble A | g Page 2 o o’ X SIS [#] CollectionLoop.java * |
o [ collection_aida_100_cpp —— T Tuples ) 1 import org.freehep. record. loop. event. RecordAdapter;
o [ callection_aida_100_cpp_merged : attfloat vs attdouble % Mean © 0.52861 o~ TesiCollection 2 irmport org.freehep. record. loop.event. RecordsuppliedEvent;
o [ callection_aida_ 100 _from_rmysgl : xRms: 027723 o [ TestCollection_LinkTahle 3 impon hep. aida. ref.tuple. Tuple;
o [ callection_aida_100_from_postaresgl | attfloat y bean : 0.44065 o [ aaa 4
o [ collection_aida_100_from_xml i 0 o o = [ yRms: 030460 o [ menchrmark_1000000_100 5 public class CollectionLoop extends RecordAdapter {
o [ collection_aida_100_merged ig 0 9_? o = 2 g 5 o o= [ collection_aida_100 £ public void recordiuppliediRecordsuppliedEvent event) |
o [ collection_aida_100a : ' o o = o [ collection_aida_100_cpp 7 Object record = ewvent.getRecard(;
o [ collection_aida_ 100k : 0EH o o o O = o [ collection_aida_ 100_cpp_merg g Tupletuple = null
o 0 wple : =] o [ collection_aida_ 100 _fram_mysg| | #  If (record instanceof Tuple) {
ikl Run : 07T = o o [ collection_aida_ 100 _from_post ¢ tuple = (Tuplejrecord;
llil Event : = o == o Ifl collection_aicdla_100_fram_xmi 1 System. out. printinituple. getDouble(&));
ik 1Ewert 0.6 o = o =" o [ collection_aida_100_merged § el}se{
Itk MissingET : 1 = = =] - o [ collection_aida_100a - ) .
[Iil A —— §§ 05T o o ~ oo © o o [ collection_aida. 1008 : ?\,fstem.uut.prmtln(‘ Eecord is not Tuple");
ikl ik _table_ic IS SR - = = = o [ tuple _ -
lihi ohject_id_z : P . " = °a o [ tuple_LinkTable 7
¢ ) tuple_LinkT able : L = oo o Datasets
ik catabase _id i = = o = o B [collection_aida 100
comtainer_narne E: 0.2 = =
. i o = 4] i D
class_id i 014 =}
. a7 . L=
lihi technology_id : = = = = = o o = el 3%
ohject_id_1 : =4 — —3 N et o 9. =
ikl limk_table_id : 01 02 03 04 05 06 07 08 09 a.
i qa.
attdoukble
0.
: oop over ITuple
a. °
a. I=|
T1:10:37 aM ----------- compile successful a. =
0.218633 =
Compiler = | Record Loop =
Column attfloat : type float, min 0.0012155199656262994, max 0.9970179796218872 I HME ﬂ EITUIJ'E collection_aida_100: 10 columns 100 rows. [E] I




Performance

Detailed CPU benchmarking suite is provided to evaluate all supported storage formats with different access patterns (reading subset of
columns, selecting subset of rows by filter), results are available on the Web.

However, comparison of different technologies can only be done on real applications in a real use because simplified benchmarks are
always trapped by differences in optimization strategies:

> C(lient-side and Server-side caches

> Indexing

> Hollow variables
> Lazy loading
> Dynamic optimization

> Memory management

Generally, CPU time needed to read an I'Tuple can be divided into two parts:
> Constant overhead spent only once per ITuple, it is used to understand I'Tuple Schema, perform selections and prepare structures in memory.
> Access time proportional to the amount of data read in.

File-based, embedded and simple storage technologies seem to be more performant for flat access (when user reads everything or at least
knows in advance what she will need).

SQLTuple (and JDBC) brings in negligible overhead, most of the time is spend in low level access code.

Size of stored ITuples depends linearly on number or entries and is (for 100000 rows * (50 floats + 50 ints)):

> XML: 54MB

>  MySQL: 44MB

> PostgreSQL: 21MB
> McKoi: 223MB

> Root: 42MB (25MB when compressed)



Performance - sample

Writing FEeading 50% rows, 50% caols
time [s] tirme [3]
100004
104
1000
100 1T /'
10 4
01T o——M—e
14
014 0.01F o XML
0.01-— f f 0.001-+— } f B M50l
10° 104 108 10° 10t 108 Postgres 0L
oS oS + McHKoi
% FreeHEP Root
Reading 10% rows, S0% cals Reading 20% rows, S0% caols Native Root
time [s] time [s]
10T 10+ /'
/sl :
1+ 7 14
o
0l T g— @ 0.l Y
0.01F 0.01+
0.001-+— } f 0.001-+— } f
10° 104 108 10° 104 108
Fowy's Fowy's

Without constant overhead

iriting Feading 50% rows, 50% caols
time [s] time [s]
10000
1001
1000
1001 T : —
L \.'—'—'_'_F'_'_F‘-
104 1+ G?,..-_A_
14
0.1
0.1T
0.01-+ f } 0.01-+ f f
10° 1? 10° 10° 1? 108
rows rows
Feading 10% rows, 50% cols Feading 90% rows, 50% cols
time [s] time [s]
1001 1001
101 101 /-
—K H—K
el !
115 115
011 011
0.01-+ } f 0.01-+ f f
102 104 lCl6 102 lCl4 106
oS rows

With constant overhead



\

What's new
(Since Dec'03 SW WS)

Repackaging: original SQLTuple split into SQLTuple, ColMan, ColManC, ColManW§
and ColManWSClient.

Support for Pool AtributeSet:

> LinkTables in SQL,

> Pool-Root files (reading).

No SQL in code: all SQL dependency via textual configuration files.
SuperAIDA proposal: additional AttributeSet functionaity on top of standard AIDA.
Wider availability:

> as standalone packages,

> from Atlas release.

Ready for DC2:

> Collection Management utilities,

> AttributeSet Analysis.

Usable in JAS.

New things since Dec'03 presentation are marked as



Summary

AIDA, extended by SQLTuple, is suitable APT for Event Collections.
FreeHEP provides all necessary foundations.

ColMan is ready for DC2.
> SQLTuple+ColMan presents any SQL data as standard AIDA ITuples so it

> can be transparently reused within any AIDA-compatible application,

> can transparently reuse any other AIDA-based storage technology.

> SQLTuple+ColMan is platform independent (works automaticaly on any Linux,
MS, MacOSX without recompilation).

> SQLTuple+ColMan supports any relational database (MySQL, Postgres and
McKoi included, others tested)..

> SQLTuple+ColMan offers multi-language access (Java natively, Python directly,
C++ via proxies, any language via WebService).

> SQLTuple+ColMan is compatible with Pool Event Metadata.
> SQLTuple+ColMan provides high level Collection Management Utilities.
> SQLTuple+ColMan can be used in a distributed (Grid) environment.

> SQLTuple+ColMan reuses: Java, FreeHEP, AIDA, JDBC, JACE, JWDSP,
MySQL, PostgreSQL, McKoi, Log4], Ant.

> SQLTuple+ColMan is available as a standalone package or from Atlas release.



