
GraXML
 Modular Geometric Modeler

History

Architecture

�

Generic Model

�

Geometric Model

�

Core

Data Sources

Applications

J.Hrivnac (LAL/Orsay) for CHEP'03 in La Jolla, Mar'03

History (1)
Originally just 3D Detector visualisation for Atlas
Generic Detector Description (AGDD).

Several other geometry descriptions added later:

�

AliDD (extended AGDD)

�

AGDD v6++ (with math formulas, access to RDBMS,...)

�

AtlasEvent

�

AtlantisEvent (as prototype)

�

GDML (as prototype)

�

Direct access via API (Java directly, C++ via JACE proxies)

History (2)

�

Requirements on Event/Detector Display functionality often
correspond to requirements on Geometric Modeler:

�

Logical navigation in complex geometric structures,

�

Geometrical navigation:

�

where am I ?,

�

intersections (picking, collision detection),

�

materials (colors),

�

displacement and calibration (interactivity).

�

Optimised geometry (millions of 3D objects).

�

The only additional Display functionality is the manipulation of
visual properties (transparency, shading,...) - quite memory hungry.

�

3D Geometry Engine can be used as a Geometric Modeler foundation if
visual overhead can be removed.

Application

Geometric Model

Generic Model

History (3)
Java3D, used as Geometry Engine in GraXML, can be
used without visual overhead.

GraXML has been re-engineered to provide flexible
Geometric Modeling Toolkit with optional Display
capabilities.

Generic Model

Geometric Model

Application

Core

Java3D
General

Written per Schema

Generated from Schema

External

Architecture
Data Source

Content Structure

Generic Model JAXBJDBC

Geometric Model

Application

Builder Java3D

Understands

Interprets

Constructed by

Build byFilled by

Uses

General

Written per Schema

Generated from Schema

External

RDB XML

Element.java

Generic Model

Model.xsd Geometry.xml

Element.java

Model.xjs

Geometry.xml
(expanded)

Geometry.xml
(filled)

Numbers.db

JAXB

XSLT

JDBC

Generic Model

<box x=” ...” y=” ...” z=” ...” />

Public class box {
 public double x;
 public double y;
 public double z;
 }

�

Alternative XML Object
Model.

�

Representing Classes
created from XML
Schema definition.

JAXB Generic Model

Representing Classes automaticaly created from XML
Schema definition are tuned to the used Model:

�

Proper set/getters created.

�

Variables have proper types and default values based on
Schema definition and optional customisation file.

�

Generation can be customised (via XML customisation
description) to capture more complex structures and relations.

�

Generated classes can be modified by extension or by helper
conversion classes.

More natural and faster than DOM/SAX.

Initial values

�

XML file can have initial values outsourced into RDBS (for
example NOVA DetDescrDB).

�

XSQL Schema is used to define connections between XML file
and RDBS.

�

Simple JDBC Connection is used to fill those values into
parametrised XML file.

<XSQLConfig>
 <connectiondefs>
 <connection name=”demo”>
 ...
 <dburl>jdbc:mysql://atlassw1.phy.bnl.gov/NOVA_dev</dburl>
 </connection>
 </connectiondefs>
 </XSQLConfig>

...

<var connection=”demo” name=”SCT.length” />
...

<var name=”SCT.length” value=”123.456” />

Formulas
Symmetries and dependencies between attributes in XML
file can be expressed using standard mathematical
formulas.

XSLT stylesheets with simple Java BeanShell evaluator
is then used to expand structures with formulas to
concrete elements.

<array name="a" values="1;2;3;4;5;6;7;8;9;10"/>
<table name="t">
 <row values="1;2;3;4;5"/>
 <row values="6;7;8;9;10"/>
 </table>
<var name="a0" value="1"/>
<var name="b" value="a0*2"/>
<var name="c" value="a[2]*a[3]"/>
...
<box X_Y_Z=”5.5; a[5]; t[2,3]” name=”abox”/>
...

Design by Ch.Arnault

Java3D SceneGraph

Geometric Model (1)

Generic element

Geometric element

Java3D Shape/Group

GraXMLRep

�

Java3D SceneGraph build from
GenericModel according to BuildOptions:

�

Graphical or not: Whether to insert visual
attributes.

�

Level of Optimisation: How far to share
representations (SharedGroup) for
identical structures.

�

Level of Quality (restricted by
Optimisation): How closely to make
approximations and visual extensions.

�
Level of Interactivity (defined by
Optimisation and Quality): How
interactive Display should be, how far can
be objects calibrated.

�

Representations (and their properties) to
be used to represent Generic Objects.

Geometric Model (2)

Functionalities are generally added as special nodes
inserted into a SceneGraph.

As a SceneGraph (or its subgraphs) are then compiled for
speed, BuilderOptions can't be changed later (when
SceneGraph is active and used).

Group TransformGroup SolidInteracter

DetachableConnection

HEP Java3D Shapes

�

All Geant4 CSG Solids (and some
others) implemented as standard
Java3D Shapes (with equivalent
constructors). Usually
specialisations of more generic
Shapes.

�

New Shapes (Helix,...) are added
as needed.

�

Special Shapes (Outline,...)
included too.

�

Contribution to FreeHEP.

SceneGraph Optimisation

Repeated structures are discovered during SceneGraph
building and reused as SharedGroups.

Level of optimisation depends on chosen BuildOptions.

More optimised SceneGraph is smaller and faster, but
does allow only limited interactivity (calibration,...) as
SceneGraph Groups are often shared and can't be
individually changed.

Interactivity / Calibration

Depending on level of Optimisation, SceneGraph
elements (Shapes, Groups) can be modified at run-time:

�

Calibration

�

Graphical Operations:

�

Modification of Real Object (shape, place, orientation,...)

�

Modification of Visual Characteristics (visibility, color,
transparency,...)

Data Sources
XML:

�

Detector Description:

�

AGDD v4: original explicit Atlas Generic Detector Description

�

AliDD: AGDD with additional elements used in Alice

�

AGDD v6: AGDD with arithmetic formulas and connection to RDBS

�

GDML (prototype): Geant4 proposal

�

Events:

�

AtlasEvent XML files

�

AtlantisEvent XML files

API:

�

Both Generic and Geometric Models can be created directly from
Java and C++ (using JACE-created proxies).

Applications
 built using GraXML Toolkit (1)

�

Detector and Event 3D Display:

�

Very small application build on top of GraXML Toolkit.

�

Complete 3D picture (solid, wireframe, transparency, focal-lenght, ...)

�

Extensive interactivity (both real and visual properties of objects can
be interactively changed)

�

Java scripting via BeanShell (access to full Java environment)

�

Customisable 3D representation

�

Other standard 3D Display features (snapshot, picking, ...)
Config.setQuality(9);
SelectedColor.setPalette(SelectedColor.ATLANTIS);
TruthTrack.setPtCut(5.0);
Hit.asSphere();
Hit.colorFromKine();
w.show(“ Test.xml”);
j3d.snapshot(“ Picture.jpg”); Script

Applications
built using GraXML Toolkit (2)

Jets in Atlas.

Applications
built using GraXML Toolkit (3)

Alice Frame in GraXML (XML file generated from Geant4).

Applications
built using GraXML Toolkit (4)

Atlas Muon chamber.

Applications
built using GraXML Toolkit (5)

Track in Atlas Inner Detector and Muon Detector.

Transparent volumes

Photo-realistic View

Applications
 built using GraXML Toolkit (6)

Atlas Event in TRT

Atlas Event in Tile Calorimetr

Atlas Track
in Muon Chamber

Semi-cutted,
semi-transparent

Alice

Applications
 built using GraXML Toolkit (7)

Artistic view of Atlas Event in Inner Detector.

Applications
 built using GraXML Toolkit (7)

Exporters:

�

Into VRML/X3D: to be used by any VRML browser, in the
3D Cave or as input to Ray Tracer.

�

Into TXT: for debugging.

Converters:

�

Between AGDD v4, v6, v6++ via XSLT stylesheets

�

Between AtlasEvent and AtlantisEvent XML via simple
application.

Importers:

�

Geant4 to AGDD: simple C++ application provided in
Virtual MC built in Alice (thanks to I.Hrivnacova).

Summary

GraXML toolkit provides flexible foundation for
modeling of 3D spacial data in HEP.

Most of the required functionality is provided directly by
Java3D, the rest is implemented on top.

Applications build on GraXML can run in Graphical or
non-Graphical mode.

Links

�

GraXML: http://hrivnac.home.cern.ch/hrivnac/Activities/Packages/GraXML

�

More details talk: http://hrivnac.home.cern.ch/hrivnac/Activities/2001/September/GraXML

�

AGDD: http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/detector_description

�

JAGDD: http://hrivnac.home.cern.ch/hrivnac/Activities/Packages/JAGDD

�

GDML: http://gdml.web.cern.ch/gdml

�

AtlasEvent: http://hrivnac.home.cern.ch/hrivnac/Activities/Packages/GraphicsAtlasEvent

�

NOVA: http://atlassw1.phy.bnl.gov/NOVA/index.php3

�

Geant4 Geometry Convertor: http://root.cern.ch/root/vmc/XML.html

�

Java3D: http://www.j3d.org

�

JAXB: http://java.sun.com/xml/jaxb

�

Author: http://hrivnac.home.cern.ch/hrivnac

