
���������	��
����
���� ���

�
What has been done:
�

PAIDA for FreeHEP reference implementation�
JDO�
Data (in case of SQL DB)�
Changes to FreeHEP AIDA�
Using existing FreeHEP API�
Using new proposed API�

AIDA in SQL (FreeHEP + OpenScientist)�
What to do next:
�

Common SQL tables�
Standard SQL scripts�
Common Client-Server API�

And what about Root files ?

��� ����� "!�#%$'& (*)+(-,/.0�-12#0354+6	7*�8):9 ;%)�<0=>� !@?BADCFE0G:�DH"I J KML

�N���O��

�
Two proposals:
�

Persistency API (User Interface)�
Storage Access (Developper Interface)

�
Supporting prototypes:�

FreeHEP Reference impl.: full
functionality�
OpenScientist: proof-of-concept

P Complete persistency for FreeHEP AIDA reference implementation have
been provided (except Functions). It uses Java Data Object (JDO) standard
API. It has been tested with LiDO implementation of JDO (free version of
commercial tool) using several relational Databases (MySQL, McKoi,
Cloudscape). Parts have been tested also with TJDO and JDORI
implementation (open source).P Data, written this way, are readable by OpenScientist and in principle by any
other AIDA implementation.P Several strategies for common approach of AIDA Persistency are proposed.

�����

��� �
	�� �������� ����������	����� "!�#%$�	&�(')��+*�,-� �/.103254�6(�37�8 9 :<;

=?>A@ � >

Transient (data) Class

Persistent (data) ClassDB Schema

Persistency Descriptor (XML)

JDO Enhancer
AidaJDOStore

IStore

JDO RuntimeDBManager PersistenceCapable

DB

Adding persistency into
bytecode (*.class) of

transient class.

Defining
DB Schema.

Creating and managing DB.
The only DB-specific

operation.

Transparently managing
lifecycle of

PersistenceCapable
class.

Trivial
in most cases.

�
JDO implementations exist (both free
and commercial) for all existing
Databases (relationsal or not).�
All JDO Enhancers are compatible.�
JDO provides all standard database
functionality (transactions, caching,...).

B�C D D E�F�GIH
J D K L M L K

More details about JDO4HEP:
http://hrivnac.home.cern.ch/hrivnac/Activities/2002/June/JDO
http://hrivnac.home.cern.ch/hrivnac/Activities/2003/March/JDO

P Short overview of JDO process.P JDO Enhancer adds persistency code into bytecode of an existing Java class.
It makes this class PersistenceCapable.P At the same time, JDO Enhancer defines a Database Schema (SQL Schema in
case of RDBS) for enhanced objects. This Schema can be reused by other
(non-JDO) applications.P Classes enhanced with an enhancer of one JDO implementation are
compatible with all other implementations.P JDO Runtime (mostly via PersistenceManager) handles all persistency
operations.P All this is Java-specific. Some ideas, however, can be reused in a more
general context.

�������
��� 	�
��������������������

!#" $&%(')+*#,.-0/ 1324165879%6:;,9<>=4?A@3%B2DC E.2GF9HI' *�JLKNMPO9QD!NR+S T UWV

XZY\[� Y

Class A
X x;
Y y;
Z z;
B b;

Table A
OID X Y Z B_OID

Class B
...

Table B
OID ...

Mgmt Table

�
Names of tables and columns can be specified.�
A Class always corresponds to a Table. A
Reference corresponds to an Index.�
Some implementations may differ (O/R mapping is
not a standard), but Class=Table, Fields=Column
convention mostly followed.

Mgmt Table
Mgmt Table

P Created SQL Schema is mostly quite natural. It consists generally of tables
representing PersistentCapable classes and management tables. Primitive
numbers are stored directly, references are mapped to indexes.P Created tables can be used by other applications.

���������
	���
����� ����������� ���
����� �"!

#%$ &('*) +-,%.�/10 243527698:'7;<.:=�>5?A@4'B3DC E�3GF:HI) ,KJMLONQP:RD#OS-T U VXW

Y[Z]_^
Z

Histogram1D table schema
(contains values and references).

FixedAxis table content
(contains several objects).

` Examples of MySQL schema.` Everything has been generated automaticaly, is manaable by JDO in FreeHEP
and by plain MySQL connector in OpenScientist.

���������
	����������	�	����������! "�

�
Any Class can be made persistent. However:
�

Java has non-class entities:�
Arrays: An Array is fine as long as it appears in the class interface so it can be enhanced together
with the class. The problematic case is when an Array is inside a Collection. Then it can't be enhanced
as a part of the Class (as it doesn't appear in the interface) and it can't be enhanced standalone, as it
is not represented by a Class. A simple wrapper Class should be created.�
Numbers: OK as they always appear in the interface (they can't be put into a Collection).�

Only real Class (maybe abstract) can be enhanced and so referenced from another
PersistenceCapable Class. Pure Interfaces should not appear as data of enhanced classes.�
Not all system classes are PersistentCapable and system classes can't be enhanced (they come
with JDK). A simple wrapper Class should be created.�

Data objects (i.e. objects to be made persistent) are not standartised in AIDA. They may
(and do) differ between implementations. Can we agree on common Data objects ?

#%$ &('*) +-,%.0/21 3546387:9;'8<=.;>@?6ACB5'D4FE G04IH;JK) ,MLONQPSR;TF#QU-V W XZY

�[���! "�

B C D D E�F GIH
J D K L M L K

P This is mostly FreeHEP-JDO specific.P While JDO realy can make any Class persistent, in reality there are some
reastrictions. But they can be overcome (mostly by wrapping). Those
problems can disappear in JDK 1.5 (thanks to templates) and JDO 2.0
(interfaces will be introduced).

���������	��
��� ��� ���������
����� �"!$#%� &('*)$+,�-�/.$021435176 8

�
AidaJDOStore has the same API as AidaXMLStore. Both implement IStore FreeHEP
interface.

�
Some changes to existing implementation have been done to support JDO:
�

Options can be provided as PropertiesFile or Properties Object (set of name-value pairs) because
real DBs have more options than XML.�
IStore is decoupled from ITree. IStore can store any object, incl. ITree. �

Writing: Tree can be created unmanaged and attached to IStore later.�
Reading: Tree is read in from DB; it is not created and filled (as in case of
AidaXMLStore).�
In case of DB containing several Trees, only the first one is delivered (another options are
returning a Collection of Trees or a merged Tree).�

Can FreeHEP IStore interface be a basic candidate for AIDA PersistenceManager ?

9;: <>=@? A�B;CEDGF H�IJHLKNMO=LPQCORTSJUWV�=7IYX ZEI�[O\,? B�]_^a`cbOdY9ae�f g hji

k���"�l�

P FreeHEP reference implementation has already a candidate for a Storage
Manager: IStore. It is currently used for storage of AIDA Trees in XML files.
It can be reused for JDO-based persistency.P Real database technology has more options and offers richer interfaces. It
could be reasonable to allow access to database features via IStore.

...

IQuery query = store.newQuery(“Tuple”);
query.declareVariables(“TupleColumn c”);
query.setFilter(“ tupleColumns.contains(c) & c.columnName == 'x' & c.columnValue > '5'”);
...

...

IQuery query = store.newQuery(“Histogram1D” , “name = 'My Histogram'”);
Collection result = query.execute(); // C++: std::something
Iterator it = result.iterator(); // C++ ?
...

IStore store = IAnalysisFactory.createPersistenceFactory(properties).create();
store.open();

IHistogram1D h1d = ...;
store.makePersistent(h1d);

store.close();

���������
	��	������������

��� ����� "!�#%$'& (*)+(-,/.0�-12#0354+687*�9);: <%)>=0?@� !BADCFEHG0I;�FJ"K L MON

���P�RQ��

Writing.
(IStore is similar to IPlotter.)

Reading/Searching Ntuple.

Searching profits from SQL optimization,
objects don't have to be created

to be searched.
The syntax, however, is Java/C++ friendly.

Reading/Searching
simple object.

(IQuery is similar to IFitter.)

S0T U V URW X Y

` JDO API has motivated sugestions for enhancements of AIDA persistency
API. It is the first real database usable to persistify AIDA, everything else is
just a streaming.` Any AIDA object can be stored/read individiualy, not only within a Tree.` Objects can be searched with a query string. The searching can be performed
on the database itself, which brings big performance profit.` All names are just suggestions (motivated by existing JDO standard).

Class IStore
void open();
void makePersistent(Object o);
Object getObjectId(Object o);
Object getObjectById(Object oid);
IQuery getQuery(...); // Collection c = query.execute();
close();

���������
	�������������
� � �����������

�! "$#&% ')(!*,+.- /102/43657#489*7:<;2=?>1#@0BA C,0ED7F�% (HGJILKNM7OB�LP)Q R SUT

�V�W�YX��
S0T U V URW X Y

Z
IStore is the main user API to AIDA persistency. It gets the properties of the storage (RW,
RO, URL, user, passwd, options and hints) via Factory or Constructor.Z

Writing is managed by makePersistent(Object o), which just registers Object to be
handled by the database. It may stored later, at te latest on the close().Z
Reading is managed by getObjectById(Object oid).Z
Searching is managed by getQuery(...). IQuery is generally constructed from filter
strings. IQuery.execute() returns a Collection of results.Z

Transaction Management is hidden behind open(), close(). It could be easily exposed (via
ITransaction ?).Z
C++ types for Object, Collection,... has to be decided.

[Proposed API for IStore.[Transaction management is hidden (behind open()/close() calls.

��� ��� ���	��
�
�������������������! "��#�$&%(')��#!*+'-,�*/.

Z
In case SQL database is used, direct SQL (JDBC/ODBC) can access it.Z
Proof Of Concept exists by creating IHistogram1D in OpenScientist from MySQL DB
written by JDO from FreeHEP.

0/1 24365 7)8/9;:�< =?>(=A@CBD3AEF9DGIH(JLK?3M>ON P;>RQDST5 8VUXWZY\[D]O0Z^)_ ` acb

d �e�-���

JDO

FreeHEP AidaJDOStore

Open Scientist

MySQL

Thanks to
Guy (OpenScientist MySQL).

[Objects, stored in RDBS by JDO, are accessible from other AIDA
implementations. Proof-of-concept has been provided with Open Scientist
reading Histogram1D from MySQL database written by JDO-enhanced
FreeHEP.[It is important to agree on common interfaces so that applications can realy
cooperate. More about this below.

�������������
	�������������

Z
Common API can be defined on three levels:�

All implementations use the same Schema of SQL tables.�
All implementations can directly read all data. High level of interoperability.�
AIDA data objects (Java, C++) implementation should be agreed (otherwise we will suffer from
conversion overhead).�
No profit from special performance of SQL Databases (i.e. from processing queries inside a database).

��� �! #" $&%�')(+* ,.-/,10324 156'4798/:<;. =-?> @)-BA4CD" %FEHG�IKJ4L?��M&N O PRQ

S�T�UWVXT
S0T U V URW X Y

[Common storage mechanism can be agreed on top of common storage API
(IStore). It can be done on three levels.[We can use exactly the same SQL Schema (same tables).

�����������
	������������	��������

Z
Common API can be defined on three levels:�

Each SQL database will contain tables with SQL scripts to create/write/read/search AIDA
objects.�

Profits from native performance of SQL databases.�
Quite clean interoperability.

��� "!$# %'&�(*),+ -/.0-21435!267(58:90;=</!>.@? A*.CB5DE# &GFIHKJML5N@�KO'P Q RTS

UWVYX�Z[V

Read Table
object script
Histogram1D_attributes “select mean,rms,... from Histogram1D”
Histogram1D_content “select ...”

Write Table
object script

Create Table
object script

S0T U V URW X Y

[We can store SQL scripts for accessing database in the database itself. It will
allow us more flexibility.

�����������	��
 ������������������������

Z
Common API can be defined on three levels:

Servers serve standard AIDA objects (either just current IStore delivering Trees or richer IStore
delivering any AIDA Object).!

Easier to reach an agreement on API. !
Profits from all possible native optimizations.!
Can use even non-relational databases (OODB, XMLDB, files,...)."
Foreign implementation has to be run to read its data. Low level of interoperability.

#%$ &('*) +-,%.0/21 3546387:9;'8<=.;>@?6ACB5'D4FE G04IH;JK) ,�LNM�OQP;RF#�S-T U VXW

�Y���[Z\�
S0T U V URW X Y

[We can work on the Client-Server level, leaving all persistency management
on the implementations.

���������	��

Z
Proposals for two new APIs:
�

Persistency API (User): IStore, IQuery.�
Storage Access API (Developper) at the level of:

Common SQL tables
Standard SQL scripts
Client-Server API�

Proof-of-concept done for FreeHEP & OpenScientist.
�

Works in (both) languages, C++ functionality is (innevitably) limited:
�

In Java environment:
can profit from full database functionality (caching, transactions, lazy loading/updating,...),
can use any database (SQL, OO, files,...).�

In C++ environment:
can read/write/search,
can use SQL database.

��� ����� ��������� �! "�$#&%'�$()�'*,+"-/.!�0 21 3� �4'56� �87:9<;>='?2�<@�A B CED

F�GIHKJLG

M Two new proposals motivated by mature JDO standard.M Java envionment is more functional(as usually).

����� ���	��
���	����
�������
���� ����� �
!

Object interchange using Root files works between FreeHEP and OpenScientist (both
ways).!
Details have to be clarified (to write TObjects (less fuctional) or AIDA Objects (not
readable by Root),...).!
JDO interface under consideration.

"$# %'&)(*,+$-/.10 243527698:&7;<-:=?>5@BA4&C3ED F/3HG:IJ(+LKNM�OQP:RE"�S,T U VXW

Y[Z]_^`Z

FreeHEP RootIO

Open Scientist RootIO

Root file

Thanks to
Tony (FreeHEP RootI,

Peter (FreeHEP RootO),
Guy (OpenScientist RootIO).

a Both FreeHEP and Open Scientist can read/write Root files.

