
Event Collections as AIDA ITuples
SQLTuple➢Requirements on Event Collections API

➢Architecture:

➢Technology Choices

➢SQLTuple Package Decomposition

➢FreeHEP AIDA Storage

➢SQLTuple Extensions:

➢ ITuple Extensions

➢ Collection Management

➢Interoperability:

➢Web Service

➢Metadata Management

➢Pool Compatibility

➢C++ Interface

➢Performance

➢Summary

J.Hrivnac (LAL) for Atlas SW WS, Dec'03 in CERN

SQL storage
for FreeHEP implementation
of ITuple AIDA ITuple interface
compatible with Pool Event Collections Metadata
(the rest is pure AIDA)

http://hrivnac.home.cern.ch/hrivnac/Activities/Packages/SQLTuple
http://java.freehep.org
http://aida.freehep.org
http://lcgapp.cern.ch/project/persist/metadata

Requirements on Event Collections API
(Event MetaData)

➢ Collections Management functionality should be provided (replications, filtering, merging,
spliting,...).

➢ Collections Navigation functionality should be provided (searching, looping,...).

➢ Analysis functionality should be available (histogramming, combining, cutting,...).

➢ All functionality should be available in multi-language environment (Java, C/C++,
Python,...).

➢ All functionality should be available in a platform-independent environment.

➢ API should be reusable with other storage technologies (SQL databases, XML files, Root
files,...).

➢ SQL syntax should be hidden, user should use her native environment (Java, C/C++,
Python,...).

➢ SQL functionality should be used (performance, advanced functions when available,...).

➢ Any SQL database should be supported (MySQL, PostgreSQL, Oracle, embedded DBs,...).

➢ Distributed (Grid) environment should be possible (WebService, OGSA,...).

➢ Compatibility with Pool Event Metadata should be possible.

➢ Performance overhead over native SQL should be negligible.

Technology Choices

➢ Following technologies have been chosen to satisfy all requirements:

➢ AIDA for API (Event MetaData are NTuples)

➢ FreeHEP implementation of AIDA (the most complete; most storage technologies
supported; Java, C++, Python and PNuts API)

➢ JDBC for access to SQL databases (103x more users than OTL)

➢ WebService for distributed and multilanguage interface (real standard)

➢ Java for native implementation (Java has all needed properties and functionality; it is easy
to export Java to other languages)

➢ JACE for interface to C++ (from C++, it is usually easier to call Java than another C++)

SQLTuple Package Decomposition
➢ SQLTuple extends existing FreeHEP

implementation of AIDA by
implementing SQL Storage.

➢ It uses the same API as other AIDA
FreeHEP storage technologies, like
XML or Root files.

➢ SQLTuple provides several extensions
to existing AIDA inerfaces:

➢ Extensions to ITuple interface
(proposed to be include in AIDA
standard).

➢ Collections Management utilities build
on top of AIDA:

➢ Global operations as Filter, Plotter and
Merger,

➢ Navigation operations as
EventSelector.

➢ C++ proxies for Collection
Management (can be extended to other
components).

➢ Web Service of Collection Management
(can be extended to other components).

FreeHEP AIDA Storage
➢ AIDA ITuples can be currently stored using many

technologies using FreeHEP AIDA implementation:

➢ AIDA (compressed) XML files,

➢ Root files (reading integrated, writing currently via
standalone application),

➢ HBook files (only reading),

➢ SQL databases (MySQL, PostgreSQL and McKoi
directly supported; Cloudscape and Hypersonic
tested).

➢ ...

➢ All AIDA standard operations are supported.

➢ ITuples (=Collections) in ITree can be mounted,
linked, copied, moved,... as in the (distributed)
filesystem. Then, they can be manipulated from the
code, GUI or command line.

➢ All database operations profit from the native
technology (e.g. copying of SQL ITuples is
performed within SQL database if possible).

MySQL

XML

filter

in JAS:

SQLTuple Extensions to ITuple

➢ Persistency (proposed as AIDA standard):

➢ AIDA storage API (IStore) is not yet standardised.

➢ Existing IStore implementations support well file-based storage technologies.
They have to be updated to accommodate real databases.

➢ The only agreed standard for AIDA persistency is currently AIDA XML
format. Other possibilities are not yet agreed as a common format.

➢ ITuple API (proposed as AIDA standard):

➢ Richer access methods.

➢ Mapping between ITuple rows and Objects (like Pool AttributeSet).

➢ ITuple management Utilities (layer on top of AIDA).

Collection Management
➢ Filter creates new (sub)Collection/(sub)Replica from existing one applying a filter

to attributes.

➢ Merger physically merges two Collections into new one.

➢ Plotter plots selected attributes from Collection.

➢ ...

➢ EventSelector returns a set of OIDs of Events from Pool Collection using a filter
on attributes:

➢ Just several examples, others can be easily added.
➢ Works accross all supported storage technologies.
➢ Java, C++ and WebService interfaces exist.

EventCollection collection = new EventCollection(url, filter_string, user, passwd);
EventIterator iterator = collection.iterator();

String oid;
while (iterator.next()) {
 oid = iterator.oid();
 ...
 }

collection.close();

Web Service
➢ Collection Management utilities are exported using JWSDP WebService server.

➢ Other AIDA functionality can be easily added.

➢ Clients can be created from WSDL WebService descriptor in almost any language
(even in C++).

➢ SQLTuple WebService can collaborate with other WebServices (like AMI), forming
Distributed Heterogenous Collections Database.

➢ SQLTuple WebService can be reimplemented as an OGSA WebService.

/** Web Client to SQLTuple EventSelector WebService.
 * All other code is created automaticaly from WSDL. */

// Get remote EventSelector
EventSelectorWS selector = new EventSelector_Impl().getEventSelectorWSPort();
selector.setProperty(ENDPOINT_ADDRESS_PROPERTY, ”http://WebServer.there.net:8080/SQLTuple/EventSelector”);

// Select set of OIDs
Object[] oids = selector.select("jdbc:mysql://SQLServer.here.net/Tuples/TestCollection",
 "pt < 6",
 "user",
 "passwd");

// Loop over OIDs
for (Object o : oids) {
 ...
 }

Metadata Management
➢ All Metadata can be accesed in a

distributed, language-neutral
way using WebServices.

➢ One WebService could mediate
access to other WebServices so
user would talk only to one
interface. So, for example, user
would supply two query strings
to AMI and AMI would
forward the second one to
SQLTuple.

➢ Local replicas of selected (sub)
Collections can be created (using
embedded technologies) to
enable disconnected work.

➢ WebServices should be placed
close to data (idealy on the same
node).

Pool Compatibility
➢ The default SQLTuple behavior is to map SQL table directly to AIDA ITuple.

➢ All SQL commands are defined in a properties file StmtSrc.properties, user can provide customized file
which allows different mapping of SQL to ITuple (i.e. different Schema).

➢ Pool AttributeSets are stored in two tables: attributes themselves in one, OIDs in another (LinkTable):

➢ Customized StmtSrc.properties file is used to access Pool Collections.

➢ Pool-aware Collection Management classes are used to access Pool-specific Collections (PoolFilter,
PoolMerger, EventSelector).

➢ Pool SQL tables are not rich enough to provide portability across applications and databases:

➢ Mapping between SQL and native types is not unified and can't be deduced from the database content.
Conservating reading is not possible without additional information.

➢ Schema are not available without reading actual database.

➢ Different databases don't use the same SQL dialect.

➢ OIDs (Tokens) can't be interpreted outside Pool.

➢ Pool Collections should put Schema definition next to data (into SQL database), it should contain two
tables:

➢ SQL commands (to be) used to access data (i.e. content of StmtSrc.properties).

➢ AttributeSet Schema (i.e. mapping to SQL types, default values, comments,...).

➢ Standalone Service for creation/interpretation of OIDs (Tokens) should be available.

ex
ist

s
to

 be
 im

pl
em

en
te

d

C++ Interface
➢ SQLTuple is written in Java

(and SQL) to profit from
mature infrastructure, largely
non-exiting in other
languages (JDBC,
FreeHEP,...).

➢ Many interfaces to C++ are
available:

➢ FreeHEP AIDA
implementation itself
implements C++ AIDA
interface via AIDA-JNI
package (used, e.g., by
Geant4).

➢ Direct C++ proxies to
Collection Management
utilities are created using
JACE package.

➢ JWSDP WebService can be
 transparently used by any
WSDL C++ Web Client.

Interfaces to other languages (Python, PNutes, ...)
are provided too.

Performance
➢ Detailed CPU benchmarking suite is provided to evaluate all supported storage formats with different access patterns (reading subset of

columns, selecting subset of rows by filter), results are available on the Web.

➢ However, comparison of different technologies can only be done on real applications in a real use because simplified benchmarks are
always trapped by differences in optimization strategies:

➢ Client-side and Server-side caches

➢ Indexing

➢ Hollow variables

➢ Lazy loading

➢ Dynamic optimization

➢ Memory management

➢ Generally, CPU time needed to read an ITuple can be divided into two parts:

➢ Constant overhead spent only once per ITuple, it is used to understand ITuple Schema, perform selections and prepare structures in memory.

➢ Access time proportional to the amount of data read in.

➢ File-based, embedded and simple storage technologies seem to be more performant for flat access (when user reads everything or at
least knows in advance what she will need).

➢ SQLTuple (and JDBC) brings in negligible overhead, most of the time is spend in low level access code.

➢ Size of stored ITuples depends linearly on number or entries and is (for 100000 rows * (50 floats + 50 ints)):

➢ XML: 54MB

➢ MySQL: 44MB

➢ PostgreSQL: 21MB

➢ McKoi: 223MB

➢ Root: 42MB (25MB when compressed)

Performance - sample

Without constant overhead With constant overhead

Summary
AIDA, extended by SQLTuple, is suitable API for Event Collections.

FreeHEP provides all necessary foundadions.

➢ SQLTuple presents any SQL data as standard AIDA ITuples so it

➢ can be transparently reused within any AIDA-compatible application,

➢ can transparently reuse any other AIDA-based storage technology.

➢ SQLTuple is platform independent.

➢ SQLTuple supports any relational database.

➢ SQLTuple offers multi-language access (Java natively, C++ via proxies, any
language via WebService).

➢ SQLTuple is compatible with Pool Event Metadata.

➢ SQLTuple provides high level Collection Management Utilities.

➢ SQLTuple can be used in a distributed (Grid) environment.

➢ SQLTuple reuses: Java, FreeHEP, AIDA, JDBC, JACE, JWDSP, MySQL,
PostgreSQL, McKoi, Log4J, Ant.

➢ SQLTuple is curently available in version beta3.

