

- Persistency of AGDD has been discussed a lot, some ad-hoc solutions (RDBS, Strings,...) have been proposed.
- Currently, AGDD files are stored in random places inside CVS.
- There is a natural solution for storage of XML files.

- Database should understand the structure of the XML elements (it should know what is element name, attribute name, attribute value,...).
- Database should support all usual DB functions (search, commit, update, delete, backup, remote access,...).

<dbXML>

What is the KML Database?

XML Database stores XML data and understands their structure.

API is specified by XML:DB Initiative.

There are about 20 native XML databases.

- Collections of elements
- ► Query language (XPath, in future Xquery)
- > Updates (XUpdate) and Deletes
- > Transaction, Locking and Concurrency
- DOM, SAX, XMLReader or XML string results
- Client-Server operation via Drivers (similar do ODBC, JDBC)
- ➤ Indexes (for speed)
- ➤ Optimised for <=50kB elements
- Some XML DBs free. Most DBs in Java.
- Slight differences in API, but big overlap (= API defined by XML:DB).
- Query elements or attributes.

<dbXML>

Why it solves the problem?

- > Data are stored as semi-structured (tree) data =>
 - > Versioning per element
 - > Structure-aware navigation, searching
 - > Speed (relations are physical)
 - > Indexable
 - ► Introspectable (DB understands structure)
- ➤ Alternatives (they either don't understand the content or have that understanding hard-wired per dtd):
 - > XML<--> RDBS mapping complex (especially XML-->RDBS), unflexible (DB knows about mapping), slow (due logical relations)
 - > XML <--> ODBS mapping (via DOM,...) slow (DOM) or unflexible (if direct binding)
 - > Storing as strings (CLOBs) dumb, doesn't understand content
- Main advantages are:
- -- Flexibility (one doesn't have to change Schema when XML DTD changes) unlike RDBS/ODBS mapping
- -- Functionality (structure is known to the DB so it can act on it) inlike storage of Strings
- Mapping RDBS --> XML easy and everywhere supported; mapping XML --> RDBS difficult

How it works?

<dbXML>

Xindice 1.0 from Apache examples.

> Commit:

xindice add_document -c /AGDD/SCT/Forward -f File.xml -n SCT_FwdSensorR1_5.6.7

Retrieve:

xindice retreive_document -c /AGDD/SCT/Forward -f File.xml -n SCT_FwdSensorR1_5.6.7

> Search

xindice xpath_query -c /AGDD/SCT/Forward -q //volume[@name='SomeVolume']

Create index:

xindiceadmin add_indexer -c /AGDD/SCT/Forward -n idindex -p //volume xindiceadmin add_collection_indexer -c /AGDD/SCT/Forward -p '*@name'

- ➤ Network access (like ODBC/JDBC using Corba or XML-RPC): xmldb:xindice://agdd.cern.ch:4080/AGDD/SCT/Barrel
- > XMLObjects for postprocessing retreived elements
- ➤ Other usuall DB features (backup, import/export,...)
- XMLObjects is an extension to XML:DB.
- Xpath is used in searching.

- Not very usefull, just allows to understand DB' design and content.

- Using extended XPath.
- Very good integration with Tomcat Web Service tool.
- Othewise similar to Xindice.
- Both Native XML and RDBS backends exist. RDBS backend may disappear as it is slower and less functional than native XML one.

- Conditional DB stores conditions, XML DB stores DetDescr structures (topology), (My)SQL DB stores concrete numbers (dimensions).
- Fragments from XML DB should be processed:
- -- Assembled
- -- Filled with data from (My)SQL
- -- Expanded with respect to Arithmetics
- -- Expanded with respect to Compact elements

All those steps can be done in various places, often by XSLT stylesheets (already existing).

- Green: (My)SQL, Blue: dbXML

<dbXML>

How it can be used?

- DbXML runs as a server either serving a distributed (Grid) environment or just private notebook.
- Server installation and management (start/stop) is trivial.
- Data export/import/backup is trivial. Standard data can be part of the Release.
- > Embeded (integrated) operation is possible too.
- > The storage hierarchy and granularity should be agreed on

- Server installation: just copy.
- Each Linux Notebook runs already tens of Servers, this is just another one.
- Versions are part of fragment' name (like SCT_Wafer_R5_1.2.3).