
� � � � �����	�
����

� � �������������������! #"%$&�(')
� � ���������������+*-, .0/1���&��"2���!�3)
� � ��45�&�6�7 2$�89�:�����;�;<=�! %"%$��>')
� ? A@B�&��@C %�ED9��)
� ? A@B�&�GFH�JIK"%�MLN�!�POQ)

R�SUTWVYX[Z[\E]^S`_6Vba&cedfc&c�g=hji�k%l2monqpsrfVut#v wbx y2z T`h z X|{�a�hj}uiYVH~�ps�MR����Na�X�V!t

- Persistency of AGDD has been discussed a lot, some ad-hoc solutions (RDBS, Strings,...) have been
proposed.
- Currently, AGDD files are stored in random places inside CVS.
- There is a natural solution for storage of XML files.

� �������	�
���
��� ����������� �

To store versioned structured hierarchical information
(XML)

so it can be retrieved as such.

- Database should understand the structure of the XML elements (it should know what is element
name, attribute name, attribute value,...).
- Database should support all usual DB functions (search, commit, update, delete, backup, remote
access,...).

� ���������	�
����
 � � � ���������������

�
Collections of elements

�
Query language (XPath, in future Xquery)

�
Updates (XUpdate) and Deletes

�
Transaction, Locking and Concurrency

�
DOM, SAX, XMLReader or XML string results

�
Client-Server operation via Drivers (similar do ODBC, JDBC)

�
Indexes (for speed)

�
Optimised for <=50kB elements

XML Database stores XML data and understands their structure.
API is specified by XML:DB Initiative.

There are about 20 native XML databases.

- Some XML DBs free. Most DBs in Java.
- Slight differences in API, but big overlap (= API defined by XML:DB).
- Query elements or attributes.

� ��� �����
	���
���������������	�������� �

Data are stored as semi-structured (tree) data =>
!

Versioning per element
!

Structure-aware navigation, searching
!

Speed (relations are physical)
!

Indexable
!

Introspectable (DB understands structure)

Alternatives (they either don't understand the content or have that
understanding hard-wired per dtd):
!

XML<--> RDBS mapping - complex (especially XML-->RDBS),
unflexible (DB knows about mapping), slow (due logical relations)

!
XML <--> ODBS mapping (via DOM,...) - slow (DOM) or unflexible
(if direct binding)

!
Storing as strings (CLOBs) - dumb, doesn't understand content

- Main advantages are:
-- Flexibil ity (one doesn't have to change Schema when XML DTD changes) - unlike RDBS/ODBS
mapping
-- Functionality (structure is known to the DB so it can act on it) - inlike storage of Strings
- Mapping RDBS --> XML easy and everywhere supported; mapping XML --> RDBS diff icult

� ��� �������
	���
��

�
Commit:
xindice add_document -c /AGDD/SCT/Forward -f File.xml -n SCT_FwdSensorR1_5.6.7

�
Retrieve:
xindice retreive_document -c /AGDD/SCT/Forward -f File.xml -n SCT_FwdSensorR1_5.6.7

�
Search:
xindice xpath_query -c /AGDD/SCT/Forward -q //volume[@name='SomeVolume']

�
Create index:
xindiceadmin add_indexer -c /AGDD/SCT/Forward -n idindex -p //volume
xindiceadmin add_collection_indexer -c /AGDD/SCT/Forward -p '*@name'�
Network access (like ODBC/JDBC using Corba or XML-RPC):
xmldb:xindice://agdd.cern.ch:4080/AGDD/SCT/Barrel�
XMLObjects for postprocessing retreived elements

�
Other usuall DB features (backup, import/export,...)

Xindice 1.0 from Apache examples.

- XMLObjects is an extension to XML:DB.
- Xpath is used in searching.

� � � � ��� � 	 �
��

XindiceBrowser 0.85.

- Not very usefull, just allows to understand DB' design and content.

� � � � ��� � 	 �
��

�
Interactive client:
exist:/> cd /AGDD/SCT/Barrel
exist:/> find document(*)//volume[@name='SomeVolume']
found 25 hits

�
http connection:
http://agdd.cern.ch:4080/?_xpath=document(*)//*[@name='SomeName']

�
Search:
xindice xpath_query -c /AGDD/SCT/Barrel -q //volume[@name='SomeVolume']�
Interface to Cocoon2 and Tomcat/Catalina

eXist 0.7.1 from SourceForge.

- Using extended XPath.
- Very good integration with Tomcat Web Service tool.
- Othewise similar to Xindice.
- Both Native XML and RDBS backends exist. RDBS backend may disappear as it is slower and less
functional than native XML one.

� ��� �����
	��
���������� �

�
Cooperation with Conditions DB and Primary Data DB on the level of Athena:
�

Conditions DB Svc provides appropriate version tag(s)�
XML DB Svc provides set of AGDD fragments for those tags�
DetDescrSvc assembles those fragments and provides transient Detector Description
from them (XML DB Svc can use dedicated XMLObject to assemble fragments and
deliver consistent document)�
Connection to (My)SQL Primary Data DB Svc with numbers can be done on either
level (possibly using Spitfire/XSQL/Grid which delivers (My)SQL content as XML)

DetDescrSvc

ConditionSvc

XMLSvc

PrimaryDataSvc

Version version = getVersion(Time time)

getFragment(version)

getDataBlock(version)

- Conditional DB stores conditions, XML DB stores DetDescr structures (topology), (My)SQL DB
stores concrete numbers (dimensions).
- Fragments from XML DB should be processed:
-- Assembled
-- Filled with data from (My)SQL
-- Expanded with respect to Arithmetics
-- Expanded with respect to Compact elements
All those steps can be done in various places, often by XSLT stylesheets (already existing).
- Green: (My)SQL, Blue: dbXML

� ��� �����
	��
���������� �

DbXML runs as a server either serving a distributed (Grid)
environment or just private notebook.

Server installation and management (start/stop) is trivial.

Data export/import/backup is trivial. Standard data can be part of
the Release.

Embeded (integrated) operation is possible too.

The storage hierarchy and granularity should be agreed on

- Server instal lation: just copy.
- Each Linux Notebook runs already tens of Servers, this is just another one.
- Versions are part of fragment' name (l ike SCT_Wafer_R5_1.2.3).

