
��� � �����
	 ��������
� ����������������� �"!$#&%'�)(
* +-,/.1032546,)78,:9<;>=@?�AB,DC1;>0"46,D=
* E 4:FHG�2I;J,:FK;>0"46,
* L ;>CM;>0"=

� ���N�PORQ3SUT
Q"QV�/WX�
* Y[Z ;J2>\]C";J2 Z 9
* E 4:FHG�2I;J,:FK;>0"46,
* +-,_^ICM;J2 Z 98; Z`E ;J^ICa= E 4HFKG<2b;J,cF&;>0"46,
* +-,_^ICM;J2 Z 98; Z +ed EgfhE 4:FHG<2b;J,:FK;i014&,
* E F:F6,_=_=kj:4 Z 7NlUmnm o3p'qsrtp'u"vxw)rzy|{~}|�

�R�������
w�u�}|�

���
qz}'uM�M�$�

�t�
}�wi�a�
���>��rz{��3�"���

�R�
}��"� �|�

Ther
e a

re
more

 sli
des

(de
tai

ls a
bou

t J
DO)

on
W

eb.
 N

ot
all

 of

the
m w

ill
be

pre
sen

ted
.

� Half yer ago (September'01): overview of JDO; today: concrete realistic
proposal how to implement (Root) Persistency Service for both Java and
C++ using JDO.� In the Java Note (almost two years ago), we wrote that persistency is
not resolved in Java. It is no more true. Java now offers persistency APIs
superior to those of C++ (JDO, JDBS, jSQL, RootIO-Java, Objy-Java,
Oracle-Java). Also Java 1.4 (Merlin) delivers significant improvement in
Java IO speed.� We are doing a lot of useless work, there are products which already
satisfy our requirements.� The slides describing basic JDO features are included (mostly copied
from the presentation made to Atlas in September 2001) but mostly
skipped during the presentation.

� ������� ���	��
�����������
 �

Java and ODMG standard for object peristency�
Java Comunity Process Open Standard JSR-12�
Approved in Spring'02:�

Reference Implementation available (incl. Sources)�
Complete documentation available�
Compatibility Test Suite available�

Expert Group:�
Apple, Excelon, Informix, Libelis, Oracle, Poet, Sun, Versant, Forte, IBM,
Objectivity, Rational, Secant,...�

Key component in EJB persistency�
Very active community (Developpers and Users)

� Each Java standard should have Reference Implementation and Test
Suite.� Very active developpers community, many existing activities and
products (both commercial and Free).

���������	� ��
����������
��

Uncomplete list as of 28May'02.

�
Products:
�

Comercial:�
Judo, OpenFusion, Kodo, FastObjects, Orient, Diamond, LiDO, ...�

Free:�
Reference, Sparrow, ObjectBridge, Castor, ...�

Supported Stores:�
Files:�

RI, XML, flat, C-ISAM, TPM, ...�
RDBS/OODBS:�

Any JDBC, MySQL, Oracle, PostgreSQL, InstandDB, Versant, Poet, Orient,
Gemstone, Sybase, DB2, Informix, ...

� Many commercial applications have free versions.� New implementations / versions are comming very quickly.� Castor is not 100% compatible.

� ����� � �	��
������� ��������� �	����
���	�
 *

Transparent persistence (= Transient-Peristent separation)*
No need for new language to describe persistency*
Portability (platform independence)*
Range of implementations (no lock in one DB vendor)*
Persistency for 3rd party objects*
Data store technology independence:
�

OODB
�

RDB
�

HDB
�

Files

� Transparent Persistence = Transien-Persistent Separation.

���������
	����������� ����������������

public class Hit {
 public Hit(double x,
 double y,
 double z) {
 m_x = x;
 m_y = y;
 m_z = z;
 }
 public double x() {
 return m_x;
 }
 public double y() {
 return m_y;
 }
 public double z() {
 return m_z;
 }
 private double m_x = 0;
 private double m_y = 0;
 private double m_z = 0;
 }

public class Hit {
 public Hit(double x,
 double y,
 double z) {
 m_x = x;
 m_y = y;
 m_z = z;
 }
 public double x() {
 return m_x;
 }
 public double y() {
 return m_y;
 }
 public double z() {
 return m_z;
 }
 private double m_x = 0;
 private double m_y = 0;
 private double m_z = 0;
 }

Transient class

Persistent class

No additional code is required to make a class persistent.

X

���������	��
����
������
MyClass.java

MyClass.class

MyClass.class
(enhanced)

Persistence
Descriptor

(xml)

DB SchemaO/R map

compiler

O/R Mapping DBJVM

enhancer

loader

Enhancer can be also part of compiler or loader.

All enhancers create compatible
enhanced classes - so they can
be mixed.

� This is the most easy (reference) implementation, but class can be
enghanced at any stage:source postprocessing, while compiling, while
loading,...� All Enhancers should be compatible.� Customisation: transient data, T-P mapping, clustering of data,...

���������
	��
������ �������������������

InputStream input = new FileInputStream(“jdo.properties”);
Properties p = new Properties();
p.load(input);
PersistenceManagerFactory factory = JDOHelper.getPersistentManagerFactory(p);
PersistenceManager manager = factory.getPersistenceManager();
Transaction transaction = manager.currentTransaction();
transaction.begin();
Track track = new Track(blabla);
manager.makePersistent(track);
transaction.commit();
manager.close();

Track doesn't have to know anything about persistency
to become persistent.

TypeSystem

Versioning

Persistence

Any class can be made persistent this way.
There are no restrictions.

jdo.properties contain definition of the persistent technology (driver),
placement and other properties. It is simple text file.

� Exactly the same source for all implementation of JDO, special
properties defined in jdo.properties file 9and possibly in XML
descriptions of classes).� Class can be made persistent, if it is completely defined by its fields. So,
for example, classes with native interface, Threads, Sockets or Files can't
be made persistent.� Strictly speaking, JDO doesn't implement exact Orthogonal Persistency,
but the differentces are minor and irrelevent for us.� Orthogonal versioning implements Class evolution (Scheme evolution),
it uses similar architecture as Orthogonal persistence, but it is not much
developed.� Transaction management can be omitted.

� ���������
	���������������������

PersistenceCapable
void jdoIsPersistent();
void jdoIsNew();
void jdoIsDeleted();
void jdoIsTransactional();
void jdoIsDirty();
void jdoMakeDirty();
PersistenceManager jdoGetPersistenceManager();
Object getObjectId();

Track Track

Enhancer

Track may implement
PersistentCapable interface
directly.

� Enhancer changes normal class into PersistenceCapable class, but user
can do it herself.� Source (.java) doesn't know about persistency, run-time does know it.

� ���������

PersistenceCapable
void jdoIsPersistent();
void jdoIsNew();
void jdoIsDeleted();
void jdoIsTransactional();
void jdoIsDirty();
void jdoMakeDirty();
PersistenceManager jdoGetPersistenceManager();
Object getObjectId();

Track Track

Enhancer

Static, works for all objects
(even non PersistentCapable).

JDOHelper
void jdoIsPersistent(Object o);
void jdoIsNew(Object o);
void jdoIsDeleted(Object o);
void jdoIsTransactional(Object o);
void jdoIsDirty(Object o);
void jdoMakeDirty(Object o);
PersistenceManager jdoGetPersistenceManager(Object o);
Object getObjectId(Object o);

X

� Helper is the prefered way of interaction with JDO.

�����������
	��

Track Track

PersistenceCapable
void jdoIsPersistent();
void jdoIsNew();
void jdoIsDeleted();
void jdoIsTransactional();
void jdoIsDirty();
void jdoMakeDirty();
PersistenceManager jdoGetPersistenceManager();
Object getObjectId();

Enhancer

InstanceCallbacks
void jdoPostLoad();
void jdoPreStore();
void jdoPreClear();
void jdoPreDelete();

Object versioning (Schema
evolution) can be placed
here.

X

� Used for extending persistency mechanism.� Direct implementation can be usefull for example to generate common
OID.

���������
	��

Classes can be:
�

Persistence-capable (enhanced, can have transient or persistent instances)�
Transient (can't be persistent, system classes like Thread, classes with native components,...)�
Persistence-aware (enhanced, can't be persistent, but can access public data of persistent classes)

Objects can become persistent as:
�

First Class object (persistent by itself, it has its OID)�
Second Class object (persistent due to its relationship to some First Class object, it doesn't have
its OID, contained object)

Fields can be:
�

Persistent (managed by JDO)�
Transactional non-persistent (partly manged by JDO)�
Non-transactional non-persistent (managed by application)�
Grouped into fetch groups which are accessed together

X

Java Virtual Machine

���������
	�� ������

Transient objects

Persistent objects

Instantiated
Persistent Objects

DB virtual objects

Mapping

X

Java Virtual Machine

� �������	��
 �

Application
Persistent
Manager

Persistent
Manager

DB

DB

Transient
Instance

Transient
Instance

Transient
Instance

JDO
Instance

JDO
Instance

JDO
Instance

JDO
Instance

Query

Query

Transaction

Transaction

X

� Objects can be in different databases as all Enhancers should create
compatible code.� Database can be local or distributed (via application server).

� ���������
	������������� �����������������	��

a:A
b
c

b:B
d

c:C
b
d

d:D

A a = db.lookup(key);
B b = a.b();
C c = a.c();
D d = c.d();

�
All objects referenced by persistent objects will also become persistent.�
Objects are loaded implicitely (lazily) when fields are accessed or by
demand.�

Fields can be pre-loaded/cached in groups (like in split Trees).�
Modified objects are implicitely updated in the database.�
Unreachable objects are removed from the database by a garbage collector.�
Embedded objects should be managed by their conteiner objects.

X

 Common concept for Java Databases. b should be First Class object, otherwise it can't be shared between a and
c. Otherwise, one would have two copies of b. This is similar to
StoreGate problems.

 PersistentTransient

Writable

Readable

���������
	�� ����������������

persistent-clean

transient-
nontransactional

transient-dirty

persistent-
new

transient-clean

transient-dirty

transient

hollow

transient-
new-deleted

persistent-deleted

X

� It helps to understand and manage object' lifecycle.� Transitions correspond to jdo methods. � User doesn't care.

���������
	���

�
Comparing objects by:
�

Identity (a == b)
�

Equality (a.equals(b))
�

JDO identity (a.jdoGetObjectId().equals(b.getObjectId()),
defined by OID, managed by:�

application (insures uniqueness between data stores)�
data store (independent on the instance value, not portable)�
JDO (quarantees uniqueness in JVM, but not in the data store)

X

 Identity and Equality are standard Java concepts. To insure universal navigation, application identity should be used.

���������	��
���������

Transaction
boolean isActive();
void begin();
void commit();
void rollback();

TransactionFactory
Transaction currentTransaction();

PersistenceManager

�
Data Store Transactions�
Optimistic Transactions - operations are

performed imemdiately using local store; during
flush, consistency is verified�

No Transaction�
Synchronised Transaction - for distributed access

X

���������	�

ExtentFactory
Collection getExtent(Class pc, boolean subclasses);

PersistenceManager

Extent
Iterator iterator();
boolean hasSubclasses();
Class getCandidateClass();

Extent is a Collection.

X

� Allows searching using object types.� Similar concept exists in StoreGate.

���������	��

QueryFactory
Query newQuery();

PersistenceManager

Query query = manager.newQuery();
query.declareVariables("Event event")
query.declareParameters("double ptMax");
query.setFilter("event.pt() > ptMax");
query.compile();
Collection result = query.execute(new Double(5));

Query

Java queries are internaly translated
into native DB queries (SQL for RDBS).
They can be compiled for speed.

X

� Queries are expressed in Java itself (not in additional language like
SQL), but they have "set" semantics.� Native DB queries for RDBS are efficient.� Extent is used.

�����
�����
	������������������������ �!�
�#"

�
JDO is the main storage interface for EJB:
�

The importance of the EJB Architecture will insure
implementation of JDO

�
EJB Achitecture is interesting by itself:
$

Entity Bean == DataObject$
Session Bean%

Statefull Session Bean == Algorithm%
Stateless Session Bean == Service$

Grid-like

X

& Worth to look at.

� �������	�	������
 �������� ����� ���������

 $
It satisfies well requirements as defined by RTAG

$
It profits from the existing mature technologies, which can be reused:

$
Root files$
Java RootIO$
JDO API$
Open JDO implementations:$

Reference$
GNU$

Java environment$
It gives transparent access to the same data from both Java and C++ at the
same time

$
It offers plurality of persistency technologies (Root files, any RDBS,
OODBS, other file-formats,...)

& JDO itself satisfy all RTAG Requirements except the requirements that
implementation should use Root. But this hole can be easily fixed.

���������	� ��
����������
 ����
������������ �

!
JDO layer (Interface):"

Reference implementation:#
Free source#
Open for recherche use#
Works with files#
Complete"

Sparrow/ObjectBridge GNU implementation:#
GNU (SourceForge)#
Not as mature, but very active evelopment#
Uses BCEL library (Apache) - the same as Java RootIO!

IO layer (File access):"
Java RootIO from FreeHEP:#

Complete implementation of reading (Root version > 3.00)#
Writing under development#
Performance equivalent to native RootIO#
Uses BCEL (Apache) library for dynamic creation of objects - doesn't need Cint, Root dictionary and pre-
processing

& Writing to Root files can be ready in about half year.& BCEL dynamicaly creates objects in memory according to description
read from Root file. The source for those classes can be saved as well.

��� ����� �	��
��� � ��������
�����
������

LCGPersistency

JDORI

ExpPersistency

JDORoot

JDO

RootIO

RefSvc

Enhancer
Any Enhancer
can be used.

Reading part
exists, writing
part (easier) is
under
development.

Reference
implementation
can be reused.

Reference
implementation
(JDORI) can be
reused.

replace

� Enhancer is precisely defined - easy to re-implement. Special treatment
of Root files (split mode, ...) can be added.� Blue: ready (standard components which can be re-used).� Green: partly ready (reading works well, writing under development).� Red: to do.� White: common for all LCG implementations, language neutral:
realtional layer, OID,...

� ��������� �
	������������������� �����

�
Standard Java Streaming can be easily implemented on top of basic Java RootIO
too.�
It would deliver just basic Object IO services.�
It has several advantages:

Simple API
Same API as Native Java Streams
Chaining with other Streams
Operation over the Network
Connection between Processes
Connection to hardware�

Higher level services could be implemented also on top of this interface.�
Compatibility between JDO RootIO and Streaming RootIO (OID, References,...)
is desirable.

! Closer to native RootIO implementation, but lacks DB functionality.

� �����������
	��� �����

Import javax.jdo.PersistenceManager;
...
PersistenceManager pm = pmf.getPersistenceManager();
...
Event event = ...;
pm.makePersistent(event);
...

Java

C++

�
Java --> C++ interface created by JACE.�
Other alternatives:� - Cygnus Native Interface (CNI)� - Java Access to C++ Objects (JACO)� - Java Native Connectors

using jace::javax::jdo::PersistenceManager;
...
PersistenceManager pm = pmf.getPersistenceManager();
...
Event event = ...;
pm.makePersistent(event);
...

! JNI is not difficult, just tedious. It's important to get a tool which
automates task of creation of interfaces. There are several candidates,
JACE seems to be the best.

��� ���

�
Toolkit for creation of C++ proxies to transparently access to Java objects using
JNI�
Runtime library handles:�

Objects lifetime�
Exceptions�
Threads�

Handles any Java (full JDK has been processed - 1000s of classes)�
GNU�
Works on Solaris, HPUX, MS Windows, soon on Linux�
Negligible performance price as no data are copied, all calls are just redirected�
Proxy has to be created for each (new) class

! Unlike Java, porting of C++ part of JACE to new
platform/compiler/library requires significat effort (one has to compile
thousand classes). ! Linux g++ port is under active development.

� �������	��
� ��
�� ��� � � ���������������	����� �"!$#

 %
Standard JDO PersistenceManager can be used. It provides all required
functions. Its behaviour can be customised via Properties (text file) of the
PersistenceManagerFactory. Several PersistenceManagers can co-exist
(connected to different files or even different technologies). %
StorageMgt task is performed directly by the Java RootIO.%
Basic Transient Cache Management is provided directly by Java itself.
Higher level DB-like functions (keys, meta-information passing,...) can be
implemented on top using InfoBus or JavaSpaces. JACE interface allows
reusing of existing C++ Transient Cache Managers.

! How it satisfy RTAG Architecture ?

� �������	��
� ��
�� ��� � � ������������������� �"!$#&%

 %
References within one JDO DB (Root file) are handled automaticaly.
External References can be handled by PersistenceManagerFactory with
connection to standard Relational Service (Grid, JNDI ?).
PersistenceManagerFactory creates proper PersistenceManager connected
by JDO DB which containes required Object. The address of this JDO DB
is obtained from the Relational Service. Dynamic Proxies can be used for
transparent handling of the remote References at the language level. Those
can also provide additional functionality (caching, lazy-loading,
placement,...). Identity managed by Application (i.e. LCG identity) should
be compatible with the native C++ OID.%
Natural granularity for Placement is JDO DB (Root file), it can be
trivially implemented using PersistenceManager Properties. Finer
granularity can be implemented as JDO extension.

' Caching within one JDO DB is provided directly by JDO.' JDO uses Coollections as hints for data clustering, further level of
clustering can be specified in class description XML file.

� �������	��
�� �
�� ��� � � ���������������������! �"$#

%

Transient Dictionary is not needed thanks to Java Reflection. Persistent-
Transient Dictionary is handled by JDO itself (via standard XML file).
Default mapping can be to some extend customised. Further level of
customisation can be implemented on top of JDO (by Dynamic Proxies).%
JDO fully supports all standard Java Collections. Collections are internaly
handled in a special way insuring good performance. High level collection
management can be implemented on top.

����� � ��� 	 �
�����������������������
 %

Components ... should implement abstract interfaces and be as technology
neutral as possible. ...%
The interaction ... should happen exclusively through the public and agreed
interfaces. ...%
... A thin layer to hide the technicalities of such interfaces should be
envisaged.%
... If implementations already exists providing the required functionality
they should be used to provide the initial implementation.%
We target C++ as the main programming language, however we should
avoid contructions, which makes impossible the migration to existing or
future new languages.%
... Transient objects whose states will be saved/restored will be compiled
and linked without knowledge of any specific persistence technology.

' Very well satisfied by JDO.

� �������	��
� ��
�� ��������� ���������	�����	�����

 %
JDO can be easily coupled to Athena as a Convertor. C++-Java mapping is
then provided using ADL and JACE. Default Persistent-Transient
mapping can be customised (by JDO configuration XML file). (However,
this way, one looses a lot of JDO functionality, which should be then re-
implemented in StoreGate.) %
JDO itself provides Transient-Persistent separation using standard Java as
its Transient Store. Additional Transient-DB functionality (types/Extents,
keys, History, ...) can be implemented on top of it using Dynamic Proxies
and InfoBus or JavaSpaces (prototype exists). Mapping to the rest of
Athena (Algorithms, Services) can be done with the help of ADL. This way
is worth to try later.%
Global Placement and Sharing can be supported on the level of
PersistanceManagerFactory as DynamicProxy references. Local Sharing is
provided by the language environment itself. Those features should not be
hardwired in the persistency, persistency should just allow it.

' Interface to Athena (C++) certainly downgrades the functionality of
JDO as all Athena has been designed with C++ limitations in mind.' There are two layers of Transient-Persistent separation (Cnv) in the
Simple model: Root-file -- JDO(Cnv) -- Java -- JACE -- C++ --
AthenaCnv -- DataObject. However, the data are copied only once - in
AthanaCnv. JDO reads into memory (it doesn't do any additional copy),
JACE provides remote access.' There is an additional mapping work to be done work Objects which are
not supported by RootIO, but this work is needed in all implementations.' PersistanceManagerFactory creates PersistantManager working on
particular instance of JDO DB. This can be used both to place
Collections as desired and to find them (in collaboration with
Navigation/Relational layer).' JACE uses as the source of it description Java Class, which is in this
design created (staticaly on dynamicaly, possibly includin JDO-
customised mapping) from the the exsisting Root file. Athena, however
uses ADL to create C++ (and other) representations. This doesn't pose
any problem as long as all sources (i.e. ADL and objects inside Root file)
are consistent.

� ���������
	��

Required manpower: about 1 (+ T.J. already working on Java Root
IO + coordination with common components (navigation, OID, ...))
Timescale:%

Full chain using non-Root files in Java: now%
Full chain using non-Root files in C++: September (1 month from now)%
Full chain using Root files in Java and C++: end of year 2002%
Production level system: one year from now%
Connection with common LCG & Grid Services: as soon as they are
available

' This project requires much less manpower that the all-in-C++ project to
deliver at least equivalent functionality in both Java and C++.' The project is realistic, most components are already fully functional.' The required work consist mainly from glueing all components together,
interfacing them into common LCG Framework (and through that into
experiments' Frameworks) and replacing existing components with
others.

���������
	�������

�
Proposed solution delivers at least equivalent functionality as the mainstream (fully C++,
Root-based) one thanks to reuse of mature language and products.

�
It satisfies all Atlas and RTAG requirements in a modular way (many components can be
replaced by equivalent components without loss of consistency).

�
It requires much less manpower thanks to massive reuse of existing code and concepts
(many features which have to be implemented in the mainstream solution already work
here).

�
It works at the same time in both Java and C++ environments, with the same API. C++
proxies can be build completely automaticaly, no other special C++ processing (dictionary,
pre-processor, ...) is needed. It is clear, however, that C++ API is less functional than Java
one.

�
It always uses widely accepted standards and Open or HEP products.

�
It allows using of wide range of persistent technologies thanks to modular reuse of abstract
API.

�
Work can start immediately as all components have existing alternatives so that the whole
chain is functional thanks to modularity of the architecture.

� �������

�
JDO:
http://www.jdocentral.com

�
JDO Reference Implementation:
http://access1.sun.com/jdo/

�
Sparrow/ObjectBridge:
http://sparrowdb.org/
http://objectbridge.sourceforge.net/�
Root:
http://root.cern.ch�
Java Root IO:
http://java.freehep.org/lib/freehep/doc/root/index.shtml�
JACE:
http://reyelts.dyndns.org:8080/jace/index.html�
This Presentation:
http://home.cern.ch/~hrivnac/2002/May/JDO/

