FDO for Ro
> (Java Data Obgects '
> Requirements / (Features
» Architecture
> Status
> FDO for RootIO
> Motivation
& » Architecture
» Relation to Atlas

> Aeceess from O++ 1
Atlas Software Week in CERI, May02

*Half yer ago (September'01): overview of JDO; today: concrete realistic
proposal how to implement (Root) Persistency Service for both Java and
C++ using JDO.

*In the Java Note (almost two years ago), we wrote that persistency is
not resolved in Java. It is no more true. Java now offers persistency APIs
superior to those of C++ (JDO, JDBS, jSQL, Rootl O-Java, Objy-Java,
Oracle-Java). Also Java 1.4 (Merlin) delivers sgnificant improvement in
Java | O speed.

*We are doing alot of uselesswork, there are products which aready
satisfy our requirements.

*The slides describing basc JDO features are included (mostly copied
from the presentation made to Atlas in September 2001) but mostly
skipped during the presentation.

(fava Data Ob,
» Java and ODMG standard for object ::-"
» Java Comunity Process Open Standard
» Approved in Spring 02: :
» Reference Implementation available (i1

» Complete documentation

» Compatibility Test Suite a
» Expert Group: i

» Apple, Excelon, Infor
Objectivity, Ratio

*Each Java standard should have Reference I mplementation and Test
Suite.

*\Very active devel oppers community, many existing activities and
products (both commercid and Free).

» Products:
» Comercial:
> Judo, OpenFusion, Kodo, FastObje
> Free: -

> Reference, Sparr'a_/;
» Supported Stores: i
> Files:
> RI, XML, flat, C- , TP
> RDBSOODBS:

*Many commercial applications have free versions.
*New implementations/ versions are comming very quickly.
Castor isnot 100% compatible.

> Portability (platform i

> Range of implement
> Persistency for

» Data store techno
> 00DB
> RDB
> HDB
> Files

® Transparent Persistence = Transien-Persistent Separation.

Transient cla

No additional code is req

v

s
loader |

> -
O/R Mapping
= —_—

*Thisisthe most easy (reference) implementation, but class can be
enghanced at any stage:source postprocess ng, while compiling, while
loading,...

*All Enhancers should be compatible.

*Customisation: transient data, T-P mapping, clustering of data, ...

Orthogonal De

ido.properties contain definition of the pe}"
placement and other properties. It is simple text

InputStream input = new FileInputStream(“jdo.properties”);
Properties p = new Properties();

p.load (input) ;

PersistenceManagerFactory factory = JDOHelper.getPersistentManagerFactory (p)
PersistenceManager manager = factory.getPersistenceManager () ;

Transaction transaction = manager.currentTransaction();

transaction.begin () ;

Track track = new Track (blabla);
manager.makePersistent (track);
transaction.commit () ;
manager.close() ;

Versioning

Persistence

TypeSystem

*Exactly the same source for all implementation of JDO, special
properties defined in jdo.properties file 9and possibly in XML
descriptions of classes).

*Class can be made persistent, if it is completely defined by itsfields. So,
for example, classes with native interface, Threads, Sockets or Files can't
be made persistent.

*Strictly speaking, JDO doesn't implement exact Orthogonal Persistency,
but the differentces are minor and irrelevent for us.

*Orthogonal versioning implements Class evolution (Scheme evolution),
it uses smilar architecture as Orthogona persistence, but it is not much
devel oped.

*Transaction management can be omitted.

PersistenceCapable
void jdolsPersistent();

void jdolsNew();

void jdolsDeleted();

void jdolsTransactional();

void jdolsDirty();

void jdoMakeDirty();
PersistenceManager jdoGetPersistenceManager();
Object getObjectld();

Track may implement
PersistentCapable inte1face
directly.

*Enhancer changes normal class into PersistenceCapable class, but user
can do it herself.
*Source (.java) doesn't know about persistency, run-time does know it.

Static, works for all objects
(even non PersistentCapable).

X JDOHelper

~ | void jdolsPersistent(Object o);

- | void jdolsNew(Object o);

void jdolsDeleted(Object 0);

void jdolsTransactional(Object o);
| void jdolIsDirty(Object 0);

void jdoMakeDirty(Object 0);
PersistenceManager jdoGetPersistenceManager(Object 0);
Object getObjectld(Object 0);

/

7%

*Helper isthe prefered way of interaction with JDO.

Object versioning (Schema
evolution) can be placed
here.

PersistenceCapable
void jdolsPersistent();
void jdolsNew();
void jdolsDeleted();
void jdolsTransactional();
void jdolsDirty();
void jdoMakeDirty();
- | PersistenceManager jdoGetPersistenceManager();
Object getObjectld();

InstanceCallbacks
void jdoPostLoad();
void jdoPreStore();
void jdoPreClear();
void jdoPreDelete();

*Used for extending persistency mechanism.
*Direct implementation can be usefull for example to generate common
QID.

X

» (Classes can be:
> Persistence-capable (enhanced, can have trans

» First Class object (persis

» Second Class object (per
its OID, contained obje

; > Fields can be:

Persistent (managed by J

Transactional non-persistent (partly

Non-transactional non-persistent (manay

Grouped into fetch groups which are access

V V V V

X

-
Java Virtual Machine

Persistent
Manager

*Objects can bein different databases as all Enhancers should create
compatible code.
*Database can be locd or distributed (via application server).

X @?Mf[t?’!??.

» Al objects referenced by persistent obje

» Objects are loaded implicitely (lazily) wi

demand.
» Fields can be pre-loaded/cached in
» Modified objects are impl

db.lookup (key) ;
a.b();
a.c();
c.d();

U Quw»
QOO0 w
| T T

*Common concept for Java Databases.

*b should be First Class object, otherwise it can't be shared between a and
c. Otherwise, one would have two copiesof b. Thisissimilar to
StoreGate problems.

*|t helpsto understand and manage object’ lifecycle.
*Transitions correspond to jdo methods.
*User doesn't care.

» Comparing objects by:
> Idéntlty (a —= o)
> fqua[ity (a.eq.a.

» JDO identity i3
defined by OIT

> application (insu

> data store (imfen 1t 0
» 9DO (quarantees uniqueness

*|dentity and Equality are standard Java concepts.
*Toinsure universal navigation, application identity should be used.

TransactionFactory %
Transaction currentTransaction();

*Allows searching using object types.
*Similar concept exists in StoreGate.

QueryFactory |
Query newQuery();

¥ Query query = manager.newQuery ();
query.declareVariables ("Event event")

query.declareParameters ("double ptMax") ;
query.setFilter ("event.pt () > ptMax");
query.compile () ;

Collection result = query.execute (new Double(5));

*Queries are expressed in Javaitself (not in additional language like
SQL), but they have "set" semantics.

*Native DB queries for RDBS are efficient.

*Extent isused.

7

*\\NVorth to look at.

> It satisfies well requirements as de
» It profits from the existing mature tec
> Root files
» Java RootIO
» JDO API

» Open JDO implen et
» Reference
> GAU

> Java environment

> It gives transparent access to th
same time

» It offers plurality of persistency tec

*IDO itself satisfy all RTAG Requirements except the requirements that
implementation should use Root. But this hole can be easily fixed.

> JDO layer (Interface):
» Reference implementation:

> Free source

> Open for recherche use

> Works with files

> Complete
» Sparrow/ObjectBridge GNU im
> GNU (SourceForge) e]
» Not as mature, but ve il

10 layer (File access):
» Java RootIO from Free fl-’_ st .

Complete implementation of reading (Ro
Writing under development
Performance equivalent to native RootlO

Uses BCEL (Apache) library for dynamic creatio
processing '

YV V V V

*\Writing to Root files can be ready in about half year.
*BCEL dynamicaly creates objects in memory according to description
read from Root file. The source for those classes can be saved as well.

FDORotTO A

—

ExpPersistency

\

LCGPersistency

[|

Reference
implementation |
can be reused.

/Referenoe

implementation
(JDORI) canbe [
reused.

Reading part
exists, writing
— —| part(easier) is
under
development.
LN

*Enhancer is precisdy defined - easy to re-implement. Special treatment
of Root files (split mode, ...) can be added.

*Blue: ready (standard components which can be re-used).

*Green: partly ready (reading works well, writing under development).
*Red: to do.

*\White: common for all LCG implementations, language neutral :
realtional layer, OID,...

=

@otgauqam

» Standard Java Streaming can be easily im
too.

» It would deliver just basic Object 10 serr ic
» It has several advantages:

Simple API

Same API as Nati
Chaining with other

Operation over the N\

Connection between P

vV V V V V V

L
e

Connection to hardware

=

> Higher level services could be impleme

> Compatibility between DO RootlO a
is desirable.

*Closer to native Rootl O implementation, but lacks DB functionality.

Ol

> Cygnus Native Interfo
>- Java Access to C++ Objects
>- Java Native Connectors

*INI is not difficult, just tedious. It'simportant to get a tool which
automates task of creation of interfaces. There are several candidates,
JACE seems to be the best.

» ToolKit for creation of C++ proxies to tran

INI
> Runtime library handles:
» Objects lifetime

» ‘Exceptions
> Threads
Handles any Java
GNU

Works on Solaris, HPUX, MS‘

Negligible performance price as no dat

Proxy has to be created for each (new)

*Unlike Java, porting of C++ part of JACE to new
platform/compiler/library requires significat effort (one has to compile
thousand classes).

eLinux g++ port is under active development.

> Standard 9DO PersistenceManager ca
Sfunctions. Its behaviour can be custo
fl’ersistenceManagerTact . S
(connected to different.

> StorageMgt task is perfo

» Basic Transient Cac

Higher level DB-like
implemented on top using
reusing of existing C++ 7

*How it satisfy RTAG Architecture ?

> References within one DO DB (Root
External References can be handled by
connection to standard Relational Ser
PersistenceManagerFactory cre
by 3DO DB which con
is obtained from the Rela
transparent handli; f
can also provide addi
placement,...). Identit

be compatible with the

trivially implemented using Persist
granularity can be implemented as J

*Caching within one JDO DB is provided directly by JDO.

*JDO uses Coollections as hints for data clustering, further level of

clustering can be specified in class description XML file.

h

(From RIAG

» Components ... should implement abstrac
neutral as possible. ... ;

» The interaction ... should happen exclu
interfaces. ... ,

» ... A thin layer to hide th
envisaged. &

... If implementations

they should be used to

> We target C++ as the main pr
avoid contructions, which mak
Sfuture new languages.

» ... Transient objects whose states
and linked without Knowledge of

*Very well satisfied by JDO.

then provided using ADL and JACE. Defa
mapping can be customised (by JDO config
this way, one looses a lot of IDO functio
implemented in StoreGate.) .

» IDO itself provides Transient-Persist
its Transient Store. Additional Tra:
Keys, History, ...) can be imp, ,,
E and InfoBus or JavaSpaces (pr
Athena (Algorithms, Services) ¢
is worth to try later.

o

on top (y"itusir.zj@g;namic Proxies i

» Global Placement and Sharing can be supporte d or r
PersistanceManagerFactory as Dynamict
provided by the language environment itse

hardwired in the persistency, persistency shou

*Interface to Athena (C++) certainly downgrades the functionality of
JDO asadl Athena has been designed with C++ limitations in mind.
*There are two layers of Transient-Persistent separation (Cnv) in the
Simple model: Root-file -- IDO(Cnv) -- Java-- JACE -- C++ --
AthenaCnv -- DataObject. However, the data are copied only once - in
AthanaCnv. JDO reads into memory (it doesn't do any additional copy),
JACE provides remote access.

*There isan additiona mapping work to be done work Objects which are
not supported by Rootl O, but this work is needed in al implementations.
*PersistanceM anagerFactory creates PersistantManager working on
particular instance of JDO DB. This can be used both to place
Collections as desired and to find them (in collaboration with
Navigation/Relational layer).

*JACE uses as the source of it description Java Class, which isin this
design created (staticaly on dynamicaly, possibly includin JDO-
customised mapping) from the the exsisting Root file. Athena, however
uses ADL to create C++ (and other) representations. This doesn't pose
any problem aslong as al sources (i.e. ADL and objects inside Root file)
are consistent.

> Required manpower: about 1 (+ T.J.
10 + coordination with common com

> Timescale:

Full chain using non-Re

Full chain using " 2

Full chain using Re

Production level system: o

V ViV VY

Connection with common LC
available

*This project requires much less manpower that the all-in-C++ project to
deliver at least equivalent functionality in both Javaand C++.

*The project isredlistic, most components are aready fully functional.
*The required work consist mainly from glueing all components together,
interfacing them into common LCG Framework (and through that into
experiments Frameworks) and replacing existing components with
others.

» Proposed solution delivers at least equivalent
Root-based) one thanks to reuse of mature [a;

(many features which have to
here). 4

It works at the same ti e i
proxies can be build comy
pre-processor, ...) is needed

» It always uses widely accepted st

» It allows using of wide range of persiste
API.

Work can start immediately as all compone
chain is functional thanks to modularity of

> 9DO:

http://www.jdocentral.com

» IDO Reference Imp[ementat on:

http://accessl.sun.com/jdo/

» Sparrow/ObjectB
http://sparrowdb.org/
http://objectbridge

» Root:

http://root.cern.ch

» Java Root 10:

http://java.freehep.or

> JACE:

http://reyelts.dyndns.org: 8080/jaﬂ.

> This Presentation:

http://home.cern.ch/~hrivnac/2002/I

