» Persistency RTAG specifies a se
Persistency Framework,

» Are there already comp,
requirements ? B

FDO for LOG P

» (Java Data Objeets
> Requirements / (Features
> chrehitecture
> Status
» DO for LOG
> Mstivat
e
> Relation to RIAG o
> cHecess from O++

=

L0G Densisteney WS in CERI, June'02

*Concrete realistic proposa how to implement (Root) Persistency Service
for both Java and C++ using JDO.

*In the Atlas Java Note (almost two years ago), we wrote that persistency
Is not resolved in Java. It is no more true. Java now offers persistency
APIs superior to those of C++ (JDO, JDBS, jSQL, Rootl O-Java, Objy-
Java, Oracle-Java). Also Java 1.4 (Merlin) delivers sgnificant
improvement in Java | O speed.

*\We are doing alot of uselesswork, there are products which aready
satisfy our requirements.

*The slides describing basc JDO features are included (mostly copied
from the presentation made to Atlas in September 2001) but mostly
skipped during the presentation.

» Approved in Spring 02:

» Reference Implementation

» Complete documentation av
» Compatibility Test Sui
> Expert Group:
» Apple, Excelon, Info Lil y
Objectivity, Rational, Secant,...

» Key component in EIB persistenc
» Very active community (Developpers

*Each Java standard should have Reference I mplementation and Test
Suite.

*\Very active devel oppers community, many existing activities and
products (both commercid and Free).

Main ey

» Transparent persistence (= Trans
» No need for new language to a ' '
> Portability (platform inde '

> Wide range of im, -;i#

> Persistency for 3
» Data store techn
> 00D
> RDB
> HDB
> Files

® Transparent Persistence = Transien-Persistent Separation.

Transient cla

No additional code is req

v

s
loader |

> -
O/R Mapping
= —_—

*Thisisthe most easy (reference) implementation, but class can be
enghanced at any stage:source postprocess ng, while compiling, while
loading,...

*All Enhancers should be compatible.

*Customisation: transient data, T-P mapping, clustering of data, ...

Orthogonal De

ido.properties contain definition of the pe}"
placement and other properties. It is simple text

InputStream input = new FileInputStream(“jdo.properties”);
Properties p = new Properties();

p.load (input) ;

PersistenceManagerFactory factory = JDOHelper.getPersistentManagerFactory (p)
PersistenceManager manager = factory.getPersistenceManager () ;

Transaction transaction = manager.currentTransaction();

transaction.begin () ;

Track track = new Track (blabla);
manager.makePersistent (track);
transaction.commit () ;
manager.close() ;

Versioning

Persistence

TypeSystem

*Exactly the same source for all implementation of JDO, special
properties defined in jdo.properties file 9and possibly in XML
descriptions of classes).

*Class can be made persistent, if it is completely defined by itsfields. So,
for example, classes with native interface, Threads, Sockets or Files can't
be made persistent.

*Strictly speaking, JDO doesn't implement exact Orthogonal Persistency,
but the differentces are minor and irrelevent for us.

*Orthogonal versioning implements Class evolution (Scheme evolution),
it uses smilar architecture as Orthogona persistence, but it is not much
devel oped.

*Transaction management can be omitted.

PersistenceCapable
void jdolsPersistent();

void jdolsNew();

void jdolsDeleted();

void jdolsTransactional();

void jdolsDirty();

void jdoMakeDirty();
PersistenceManager jdoGetPersistenceManager();
Object getObjectld();

Track may implement
PersistentCapable inte1face
directly.

*Enhancer changes normal class into PersistenceCapable class, but user
can do it herself.
*Source (.java) doesn't know about persistency, run-time does know it.

Static, works for all objects
(even non PersistentCapable).

X JDOHelper

~ | void jdolsPersistent(Object o);

- | void jdolsNew(Object o);

void jdolsDeleted(Object 0);

void jdolsTransactional(Object o);
| void jdolIsDirty(Object 0);

void jdoMakeDirty(Object 0);
PersistenceManager jdoGetPersistenceManager(Object 0);
Object getObjectld(Object 0);

/

7%

*Helper isthe prefered way of interaction with JDO.

Object versioning (Schema
evolution) can be placed
here.

PersistenceCapable
void jdolsPersistent();
void jdolsNew();
void jdolsDeleted();
void jdolsTransactional();
void jdolsDirty();
void jdoMakeDirty();
- | PersistenceManager jdoGetPersistenceManager();
Object getObjectld();

InstanceCallbacks
void jdoPostLoad();
void jdoPreStore();
void jdoPreClear();
void jdoPreDelete();

*Used for extending persistency mechanism.
*Direct implementation can be usefull for example to generate common
QID.

X

» (Classes can be:
> Persistence-capable (enhanced, can have trans

» First Class object (persis

» Second Class object (per
its OID, contained obje

; > Fields can be:

Persistent (managed by J

Transactional non-persistent (partly

Non-transactional non-persistent (manay

Grouped into fetch groups which are access

V V V V

X

-
Java Virtual Machine

Persistent
Manager

*Objects can bein different databases as all Enhancers should create
compatible code.
*Database can be locd or distributed (via application server).

X @?Mf[t?’!??.

» Al objects referenced by persistent obje

» Objects are loaded implicitely (lazily) wi

demand.
» Fields can be pre-loaded/cached in
» Modified objects are impl

db.lookup (key) ;
a.b();
a.c();
c.d();

U Quw»
QOO0 w
| T T

*Common concept for Java Databases.

*b should be First Class object, otherwise it can't be shared between a and
c. Otherwise, one would have two copiesof b. Thisissimilar to
StoreGate problems.

*|t helpsto understand and manage object’ lifecycle.
*Transitions correspond to jdo methods.
*User doesn't care.

» Comparing objects by:
> Idéntlty (a —= o)
> fqua[ity (a.eq.a.

» JDO identity i3
defined by OIT

> application (insu

> data store (imfen 1t 0
» 9DO (quarantees uniqueness

*|dentity and Equality are standard Java concepts.
*Toinsure universal navigation, application identity should be used.

TransactionFactory %
Transaction currentTransaction();

*Allows searching using object types.
*Similar concept exists in StoreGate.

QueryFactory |
Query newQuery();

¥ Query query = manager.newQuery ();
query.declareVariables ("Event event")

query.declareParameters ("double ptMax") ;
query.setFilter ("event.pt () > ptMax");
query.compile () ;

Collection result = query.execute (new Double(5));

*Queries are expressed in Javaitself (not in additional language like
SQL), but they have "set" semantics.

*Native DB queries for RDBS are efficient.

*Extent isused.

7

*\\NVorth to look at.

=

Lxisting

> Products:

» Comercial:
> Judo, OpenFusion, Kodo, FastObje
> Free: -

> Reference, Sparr'a_/;
» Supported Stores: i
> Files:
> RI, XML, flat, C- , TP
> RDBSOODBS:

*Many commercial applications have free versions.
*New implementations/ versions are comming very quickly.
Castor isnot 100% compatible.

using existing f
reader of Root f

Why FDO-Roo

» It profits from the existing mature techno

Root files
Java RootIO

JDO API

Open JDO implemen 6i0r

V V V V V

Java environment

It gives transparent,
at the same time (C++ ¢
(ater)) £

» It provides all stondord Do
loading, ...) for both Java and C++

» It offers plurality of persistency techn
other file-formats,...)

> JDO layer (Interface):
» Reference implementation:

> Free source

> Open for recherche use

> Works with files

> Complete
» Sparrow/ObjectBridge GNU im
> GNU (SourceForge) e]
» Not as mature, but ve il

10 layer (File access):
» Java RootIO from Free fl-’_ e g

Complete implementation of reading (Root
Implementation of writing under developmes
Performance similar to native RootIO

Uses BCEL (Apache) library for dynamic creatio
processing '

YV V V V

*\Writing to Root files can be ready in about half year.
*BCEL dynamicaly creates objects in memory according to description
read from Root file. The source for those classes can be saved as well.

IDO-RootTO

—

ExpPersistency

\

LCGPersistency

[|

aysroleof LCG

i stencyManager.
Reference

implementationcan |

be reused.

Reference
implementation
(JDORI) canbe |
reused.

Reading part
exists, writing
— —| part(easier) is
under
development.
LN

*Enhancer is precisdy defined - easy to re-implement. Special treatment
of Root files (split mode, ...) can be added.

*Blue: ready (standard components which can be re-used).

*Green: partly ready (reading works well, writing under development).
*Red: to do.

*\White: common for all LCG implementations, language neutral :
realtional layer, OID,...

RootIO as Java
» Standard Java Streaming can be easily
too.
> It would deliver just basic Object 10 se
> It has several advantages: ..

Simple API

Same API as Native Java

Chaining with other,
Operation over the Ne
=L
Connection between P

V. VoV Y

Connection to hardware o
i

> Higher level services could 6evimp.. e

» Compatibility between 7DO RootIO an.
is desirable. £

*Closer to native Rootl O implementation, but lacks DB functionality.

RIAG.

» Standard JDO PersistenceManager
required functions. Its behaviour

JavaSpaces. JACE interface allow
Transient Cache Managers.

*How it satisfy RTAG Architecture ?
*Transient Cache Manager isnot part of this project, but it should be
possible to useit.

RIAG. o

» References within one JDO DB (Root fi)

» OIDis defined by Application to be unique, .
part.

> OID is transparently assigned by Persisten

> Navigation Service (Grid, JNDI, s
Locator), which contains

> Identity managed by Appli
native C++ OID. -

» External References ca
connection to standard

> PersistenceManagerFact .
which containes required Object. 7
the Navigational Service.

» DynamicProxies can be used for transpa;
language level. Those can also provide ¢
placement,...). B

*Caching within one JDO DB is provided directly by JDO.
*JDO uses Coollections as hints for data clustering, further level of
clustering can be specified in class description XML file.

Transient Dictionary (mappfng |
XML file). Default mapping ca

» Java --> C++ int
» Standard JACE c
possible to create th
compatibility with n

- Java Access to C++ Objects (JA(
- Java Native Connectors

- easyINI

*INI is not difficult, just tedious. It'simportant to get a tool which
automates task of creation of interfaces. There are several candidates,
JACE seems to be the best.

JACL

> ToolKit for creation of C++ proxies to tran.

INI
> Runtime library handles:
> Objects lifetime
» Exceptions
» Threads

Handles any Java

>

> G =

» Works on Solaris, , .L
>

>

Negligible performance price as no da

Proxy has to be created for each (new)

*Unlike Java, porting of C++ part of JACE to new
platform/compiler/library requires significat effort (one has to compile
thousand classes).

eLinux g++ port is under active development.

*Blue: C++.
*Green: Java.
*White: Language independent.

PDhysical

Proxy.cxx The whole cﬁai
Dictionary/XM

Object.java

Java RootlO) =«

File.root

JDO.conf

*Blue: C++.
*Green: Java.
*White: Language independent.

(From RIA

» Components ... should implement abstrac
neutral as possible. ... ;

» The interaction ... should happen exclu
interfaces. ... ,

» ... A thin layer to hide th
envisaged. &

... If implementations

they should be used to

> We target C++ as the main pr
avoid contructions, which mak
Sfuture new languages.

» ... Transient objects whose states
and linked without Knowledge of

*Very well satisfied by JDO.

> Required manpower: < 1 FTE (+ peo
Root 10 (outside LCG), including co
components (navigation, OID, ...) a

> Timescale:

» Full chain using non-4 .
Full chain using

Production level system: one y

» Connection with common LCG &
available

*This project requires much less manpower that the al-in-C++ project to
deliver at least equivalent functionality in both Javaand C++.

*The project isredlistic, most components are aready fully functional.
*The required work consist mainly from glueing all components together,
interfacing them into common LCG Framework (and through that into
experiments Frameworks) and replacing existing components with
others.

Delues tedded BB

» Implementation in Java using the same
Nawvigational layer as in the native C++ im

> Alternative implementation in C++. This ¢
than the native one, but may offer more f1

checKing.

» Immediate support for mul

> Better overall Design th
implementations (Roo
missed others. ;

Independent understanding
(including its independence on t e
The profit will be real if t

at the same time as the mainstrea
manpower). Otherwise, the feed
implementation and overall Archite

A

*The only guarantee of clean Interfaces is independent implementation.
*A lot of inconsistencies and bugsin the Root file format.

> Proposed solution delivers at least equivalent functior
based) thanKs to reuse of mature language and produc

» It satisfies all RTAG requirements in a modular way
equivalent components without loss of consistency,

» It requires much less manpower thanks to mas v
which have to be implemented in the ma

» It works at the same time in bo y
be build completely automatic
needed. It is clear, howevy
the native one.

It always uses widely accepte

1t allows using of wide ran 2

> Work can start immediately as all compone
Sfunctional thanks to modularity of the archi

There is a lot to be [earned from mature JDO pers
While JDO itself is Java-specific, many of its c

*This project is possible thanks to heroic efford of Tony Johnsonin
decrypting native format of Root files.

> 9DO:

http://www.jdocentral.com

» IDO Reference Imp[ementat on:

http://accessl.sun.com/jdo/

» Sparrow/ObjectB
http://sparrowdb.org/
http://objectbridge

» Root:

http://root.cern.ch

» Java Root 10:

http://java.freehep.or

> JACE:

http://reyelts.dyndns.org: 8080/jaﬂ.

> This Presentation:

http://home.cern.ch/~hrivnac/2002/I

