
CMT & Java
(default way)

library Abc net/hep/bla/bla/bla/*.java
path_append CLASSPATH "${THISPACKROOT}/classes/Abc.jar"
alias Abc "java net.hep.bla.bla.bla.main"

defined in standard fragments java, jar
CMT has full control

J.Hrivnac, LAL CMT WS, 28/2-1/3/02



CMT & Java
(simple way)

CMT used only to path env
all building standalone
it's possible as (almost) all dependencies go via CLASSPATH

path_append CLASSPATH "${THISPACKROOT}/classes/Abc.jar"
private
make_fragment ThisPack
document ThisPack ThisPack1 GNUmakefile

${CONSTITUENT} :: ${THISPSACKROOT}/classes/Abc.jar

${THISPACKROOT}/classes/Abc.jar :
cd $(src);\
${MAKE} install

${CONSTITUENT}clean ::
cd $(src);\
${MAKE} clean

J.Hrivnac, LAL CMT WS, 28/2-1/3/02



WWW

CMT & Java
(full way)Used

*.java

*.java

doc

*.jar

*.jar

*.sh

full control by CMT
not yet implemented

doc

*.class

MANIFEST.MF

J.Hrivnac, LAL CMT WS, 28/2-1/3/02



JavaDoc:
CMT should have accesses to JavaDoc pages of used packages (to be able to create
links), with proper versions
standard options (and top-files) should be created if don't exist

Ant:
de-facto standard for Java configuration
CMT-requirements <-> Ant-config conversions would be usefull

JAR:
proper MANIFEST.MF should be created
dependecies should be handled
executable JAR should be created when applicable

Build reasults can be stored in CVS as they are platform/compiler independent (to large
extend) => not necessery to always build
Dependencies between packages mediated mostly just by proper CLASSPATH =>
simple configuration
Advanced features:

bytecode engineering (run-time -> *.java, *.class) / enhancement (*.class -> *.class)
JNI/Invocation (dependencies between *.h, *.c(xx), *.java, *.class)

CMT & Java
(issues)

J.Hrivnac, LAL CMT WS, 28/2-1/3/02


