CMT ¢ Java %

JAVA

(c[efau[t way) -

library Abc net/hep/bla/bla/bla/*.java
path_append CLASSPATH "${THISPACKROOT}/classes/Abc.jar"
alias Abc "java net.hep.bla.bla.bla.main"

*defined in standard fragments java, jar
*CMT has full control

J.Hrivnac, LAL CMT WS, 28/2-1/3/02

CMT ¢ Java %

JAVA

(simple way)

*CMT used only to path env
all building standalone
*it's possible as (almost) all dependencies go via CLASSPATH

J.Hrivnac, LAL CMT WS, 28/2-1/3/02

CMT e» Java

Used (full way)
WWW

=
_»_doc)

o ——

———§\ /———§\

’ N

{_*.class)—>\ jar)

/ \——-—’ \—_-—’

—— i —
- —

\5—————-——’

*full control by CMT
*not yet implemented

J.Hrivnac, LAL CMT WS, 28/2-1/3/02

CMT ¢ Java %

JAVA

(issues)

* JavaDoc:
= CMT should have accesses to JavaDoc pages of used packages (to be able to create
links), with proper versions
= standard options (and top-files) should be created if don't exist
* Ant:
= de-facto standard for Java configuration
= CMT-requirements <-> Ant-config conversions would be usefull
* JAR:
= proper MANIFEST.MF should be created
= dependecies should be handled
= executable JAR should be created when applicable
* Build reasults can be stored in CVS as they are platform/compiler independent (to large
extend) => not necessery to always build
* Dependencies between packages mediated mostly just by proper CLASSPATH =>
simple configuration
* Advanced features:
= pytecode engineering (run-time -> *,java, *.class) / enhancement (*.class -> *.class)

= JNI/Invocation (dependencies between *.h, *.c(xx), *.java, *.class)
J.Hrivhac, LAL CMT WS, 28/2-1/3/02

