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Abstract

The problem of defining and managing the detector description for the Atlas Experiment at CERN
is being addressed by applying a generic approach to the software design. This approach is based
on the development of a central model, which is independent of both the application (simulation,
reconstruction, visualisation, etc.) and the specificities of the subdetectors being described. In par-
ticular, the model permits one to provide a parametric description of both the physical elements and
the logical organisation of the subsystems, including a generalised identification scheme.

Because of the generality of the approach, the W3C (World-Wide Web Consortium) standard
XML[1] (eXtensible Markup Language) has been chosen for the persistent form of the description.
The structure of the model, including the representation of the descriptive parameters, such as shape,
dimension and material, is defined by the DTD (Data Task Definition) syntax. Using the XML
standard accelerates the development process by providing a simple, easily distributed user interface
for editing (ascii) and by giving access to a wide range of commodity tools for visualisation and
validation. In addition, construction of the transient C++ objects is automated to some extent by
making use of the DOM (Data Object Model). Work is currently active on applying the model to
describe the digitization for the various clients of the detector description.
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1 Introduction

Constructing the software components related with the management and operation of a large and com-
plex detector such as Atlas requires the sharing among these components of a precise and unambiguous
description of the detector. This description must cope with several different aspects such as the logi-
cal organisation (how the detector is structured), the geometrical attributes (dimensions and positions),
the physical properties (the materials), the read-out organisation and characterstics, or the identification
scheme for any item of the detector.

All software activities (simulation, event-building, reconstruction, event-viewing, analysis, etc.)
will eventually make use of such a description, and the uniqueness of the values as well as of the data
models used to structure the values is a key factor to the software quality.

The success of such a consistent approach resides in the fact that the description is designed to be
independent of the client software (e.g. simulation). This implies that different applications will view
the same detector description with their own eye, building a specific representation, based upon its inter-
nal algorithms. Typical examples are the use of Geant4 for the simulation, persistency schemes (these
models are generally constrained by the persistency environment such as Objectivity), or reconstruction
algorithms based on regions, roads, etc.

We therefore decided to build a generic and open architecture to address this challenge, including:

� a set of generic concepts for parameterising all values of the description, so that only the basic
values (those that cannot be algorithmically deduced from others) are considered in the description.



� a generic abstract object model for specifying detector description parameters and building the
various software items

� a set of design patterns (based on conventional patterns such as visitors, iterators or factories)
meant to construct converters between the generic model and the specific models.

� a primary textual representation of the generic model using the XML syntax.

2 The generic model

The generic model is an abstract object model representing the concepts to be used in constructing the
detector description. It is meant to receive various implementations, such as C++, XML, Objectivity,
Java, etc. Some of the concepts are today fairly well defined (the geometry, the material) whereas others
are only roughly identified and understood (the identification scheme, the readout description).

We first define a main manager named AGDD, in which all the detector description elements
(materials for the material elements and sections for the geometry elements) are maintained and
managed.

2.1 Materials

These elements describe the material of the detector constituents:

� Materials can be elements or composites.
� elements are identified using a long name.
� composites are identified using a long name and provide a density. They are made of a set of

addmaterial elements, each providing an IDREF towards an already defined material and the
percentage of this material in the composite.

2.2 Sections

A section forms the basic sub-division of the entire detector. It holds the implementation of the geometry
for this particular piece of detector. A section is primarily made of volume elements but also may receive
a set of named parameters (used to specify constants).

The volume type is generic and effective volumes are organized as a hierarchy of types :

solid volumes A basic geometry unit; Specialized types provide for specific shapes (boxes, tube
sections, trapezoids and cone sections). A solid references a material, and may
be declared as sensitive (which opens the not-yet-implemented capability of
producing hits).

compositions. Construct a new volume which consists of positioning several other volumes w.r.t
the reference frame of this new entity. Generally, there is a priori no defined vol-
ume corresponding to this entity i.e. it is a juxtaposition of volumes the envelope
of which has to be computed from the juxtaposed volumes. An explicit envelope
volume may be specified, in which all positioned volume will be placed.

boolean volumes The positioning of volumes within boolean operations (union, intersection
or subtraction) can only be done via single positioners (ie. posXYZ and
posRPhiZ). The materials of the boolean volumes should be identical.

axis compositions Constructs a new volume which consists of several other volumes or dummy
gaps piled up along one given axis (either compositionX, compositionY or
compositionZ).
The positioning of volumes proceeds via pos, gap and mpos elements.



Stacks
stackX

stackY

stackZ

A stack is defined as a stacking of several solids along the stack-axis (along either
the X, Y or Z axis).
Stack entries (element tag ”stack entry”) place solid volumes next to each other
along the X, Y or Z axis (c.f. stackX, stackY and stackZ)

2.3 Positioning of volumes

Each volume (Solid volumes, compositions, unions, etc) is positioned relatively to other volumes using
the position elements. A given volume may be referenced in several position operations.

Position operators are organized as a hierarchy of types as follows

Single compositions
boolean volumes

posXYZ : single positioning of a ’generic’ volume, in cartesians coordinates.
The volume is rotated before it is placed.
posRPhiZ : single positioning of a ’generic’ volume, in cylindrical coordi-
nates. The volume is rotated before it is placed.

Multiple compositions mposR/X/Y/Z : multiple positioning of volumes along the R, X, Y, Z direc-
tions respectively.
mposPhi : multiple positioning of a ’generic’ volume, around the Z-axis at
a given radius R, with incremental values of phi.

Axis axis-based com-
positions

pos : a single volume is added to the pile. The effective thickness along the
axis must be specified. And a rotation (one angle) along the same axis may
also be specified.
gap : a dummy spacer (with a thickness) along the axis.
mpos : a multiple position of a given volume. The effective thickness of this
volume must be specified, and a pitch may also be provided.

2.4 Identifiers

Identifiers provide for a generalized identification scheme of positioned volumes in the detector, the
primary motivation being to consistently identify parts of the detector which provide the data.

Generally, an identifier is composed of a set of numbers such as /1/3/4/5/1/34. The meaning of
each field is conventional and reflects the local hierarchy of volumes. The identifier elements permit
to freely specify which field(s) (using conventional symbolic names) will be affected by the positioning
operation. When single positioning is used, a single value of one or several fields will be affected by the
operation. When a multiple positioning operation is considered, one or several fields will be iteratively
affected. In this case, it is possible to follow the iteration by specifying a first value and a step used to
compute iterated field values.

3 The XML representation

A textual representation using the general XML [1] syntax as well as a corresponding C++ model has
been built after the generic model. A framework of utilities, based on these implemented models, and
featuring factories and visitors are available for constructing user applications meant to derive specific
views from the generic model.

Various parsers found as public domain software (Expat[3] and XML4c from IBM) have been
evaluated to form the core mechanism onto which model converters are built. The XML4c family currently
happens to be the richest one, by providing syntax checkers and Java interfaces.



4 The associated tools

4.1 Persint

The PERSINT [2] program can show and interact with the geometries written in an xml file.
Detector elements as well as hits and digits (or reconstructed quantities for some of the sensitive

detectors) can be visualized, and interactive selection of components is possible, giving access to a com-
plete identification of selected components as well as a full interactive 3D displacement of the viewing
point or of the direction of sight of any viewed object

4.2 GraXML

GraXML is a prototype of the standalone visualization program for the AGDD XML files. This relatively
modest project permitted a quite positive evaluation of the Java technologies (Java2, Java3D, XML4J and
VRML2) for the 3D detector geometry visualization. The use of standards gave us access to very good
tools for the 3D picture rendering itself.

GraXML only depends on information stored in the AGDD XML files. Thus, while verifying
correctness of those files it ensures that there are no hidden parameters present. GraXML shows the
same 3D geometry as other tools (Persint and G4) with a superior graphical quality (depending on the
used rendering engine).

Further developments of GraXML are expected, especially on integrations with the general Atlas
Graphics Architecture, or to introduce the interactive features of Java3D + VRML2.

4.3 G4Builder

A Geant4 builder is created, which is a ’client’ of the generic model (described above). Using the generic
model, it converts the materials and geometries of the xml files to Geant4 materials and Geant4 objects.
The geometries can subsequently be visualised using the Geant4 visualisation package (DAWN). The
G4builder visualises most of the AGDD syntax, as long as the appearance of the volumes in the xml file
is in order (NO forward referencing). It currently visualises whatever is put in the volume ’ATLAS’. It
cannot deal with boolean volumes as yet.

5 Conclusions

Working on a widely generic approach for the detector description was (and still is) a challenge, due
to the complex nature of the Atlas detector. This project should be still considered in its very early
phases. However, it already showed that this approach was quite valuable especially since it yielded
quite constructive thoughts and discussions between detector experts for gaining a clear understanding
of general concepts involved in this domain.

The use of XML based tools was satisfactory and does not (yet) imply exceeding complexity,
although the lack of real object orientedness was sometimes felt as a limitation.
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