work has started cca 3 weeks ago

aim:
* standalone independent Detector Display
* evaluation (+ learning) of Java

BeanShell Desktop 1.0

BeanShell 0.96 beta - by Pat Niemeyer (pat@pat.net)
lbeh % graxml x = new gramml () ;
| bsh % x.setXML("../xml/AGDD _1.04.xml");
bsh % x.set8ection ("MI")} ;
l bsh % x.construct@ceneGraph () ;
% X
%

fl bsh .show() File VYiew SpecialFX Settings Camera Lights Windows
il bsh

[Talculating lane motion Blurring,

GrafhL inibialised ... uaibing for your commands
Trput XML File? , sl AAGDD_1,04 501
Selected section: HU
Parsinz xml L.,
Generating SceneGraph ...
.. Dptimizing SceneGraph ...

Uriting weml L.
Lvy Done

how it looks:
* 3D view with visual operations and rendering options
* script interface (or batch) in 100% Java

—

BeanShell
Scene
—
Java3D
VRML
i . —
GraXML
. / Plottable
/
xml4;

XML

reuse as much as possible
* only GraXML is written and it has about 600 loc (mostly
geometrical algorithms)
* Bean Shell is 100% Java scripting + command-line interface
(a'la Cint, but almost trivial in Java), used by Wired, in Asis - 2
other candidates known
* xml4j is Java version of xml4c - many other candidates known
* Java3D is part of Java 2 (alpha™2 on Linux), VRML can
created VRML SceneGraph - other candidates known

Plottable + Scene is standard Architecture used in Atlas Graphics

/ Y

Parse XML

< on Stat_BML1">
< e MLT_RPC1" X Y Z="0 0 0" in
< v BML1_MDT1* XY Z="130. 0 O
Read XML - | R
< w BML1_SPA1
< v BML1™SPA
< 'MU BML1 MDT2" X Y Z-'s43.96 0 0"
/ < *MU_BML1_RPC1* X Y 7-'67396 0 0'
</compos

xmiaj * *
A
~
> < Create DOM > ------ > -/-\-\
* / [
_ @struct SceneG@ """" L D/D\
I_)/ v EIR =
Java3D .
VRML v _ L
N
@mize SceneGraph

o ! e
VRMLView | — —<Show VRML > -

data flow diagram is not OO, but usefull

basic philosophy is to create one Tree (XML-DOM) and convert is
to another Tree (VRML-SceneGraph)

DOM Tree is unexpanded, so it fits well into memory; by making

expansion one looses information about structure, which is needed for
SceneGraph optimization

3D

iy
9
Rep. é) 00

(OScene

App

VRML Representation within VRML Scene has two components:
* VRML itself, which talks to the Scene

* Java Object, which has access to VRML attributes and to any
other Application - it can give behaviour and interactions

* Java

* Active 3D Objects
* Scripting interface
* Standalone

* Small

* Functional

* Reuse of Modules
* Platform neutral
- * Extensible

* Open Source

same pictures as G4 and Persint -> proof of consistency (but some
hidden assumptions about geometry in DTD)

different rendering options (hidden lines, wireframe, ...) for
different pictures

after one afternoon first pictures, after one equivalent-week
functional prototype

implements only what is in XML (implementation on demand)
quite ugly implementation (needs re-design)
very easy task due to the proper choice of technology

it would be possible to do that it C++ (Open Inventor), but cca 10x
more complicated

many features are automatic, while in C++ they would make big
task (scripting, interaction with outside,...)

source is freely available

executable is 20kB small

future:
* integrate into Atlas Graphics, add interactivity
* what about Wired, JAS

